Федеральное государственное автономное образовательное учреждение высшего образования

«ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Академия биологии и биотехнологии им. Д.И. Ивановского

На правах рукописи

Макаренко Максим Станиславович

ИЗМЕНЧИВОСТЬ ХЛОРОПЛАСТНОГО И МИТОХОНДРИАЛЬНОГО ГЕНОМОВ У ОДНОЛЕТНИХ И МНОГОЛЕТНИХ ВИДОВ ПОДСОЛНЕЧНИКА (*HELIANTHUS* L.)

03.02.07 – Генетика

Диссертация на соискание ученой степени

кандидата биологических наук

Научный руководитель: доктор биологических наук,

профессор Усатов Александр Вячеславович

Ростов-на-Дону

Содержание

ВВЕДЕНИЕ	4
ГЛАВА 1. Обзор литературы	9
1.1. Систематика рода Helianthus L	9
1.2. Особенности структурно-функциональной организации хлоропластной Д	ΗК
цветковых растений	12
1.3. Особенности структурно-функциональной организации митохондриально	ой
ДНК цветковых растений	18
ГЛАВА 2. Материалы и методы исследования	35
2.1. Объекты исследования	35
2.2. Выделение хлоропластов и митохондрий из листьев подсолнечника	36
2.3. Молекулярно-генетические исследования	36
2.3.1. Выделение ДНК	37
2.3.2. Измерение концентрации ДНК	38
2.3.3. Секвенирование фрагментов ДНК методом Сэнгера	39
2.3.4. Анализ полиморфизма митохондриальных SSR локусов	40
2.3.5. Подготовка библиотек для высокопроизводительного секвенирования	41
2.3.6. Высокопроизводительное секвенирование	44
2.3.7. Анализ данных высокопроизводительного секвенирования. Сборка и	
аннотация геномов	44
2.3.8. Выделение РНК	45
2.3.9. Анализ транскрипционной активности митохондриальных генов	46
ГЛАВА З. Результаты и обсуждение	49
3.1. Изменчивость генов и некодирующих локусов хлоропластной и	
митохондриальной ДНК у однолетних и многолетних видов подсолнечника	49
3.2. Сравнительный анализ хлоропластного и митохондриального геномов у	
культурного и дикорастущего подсолнечника (Helianthus annuus L.)	57

3.3. Особенности структурно-функциональной организации геномов
хлоропластов и митохондрий у фертильного и стерильных аналогов линии НА89
подсолнечника с различными типами ЦМС
3.3.1. Изменчивость хлоропластной ДНК у фертильного и стерильных аналогов
линии НА89 подсолнечника с различными типами ЦМС
3.3.2. Изменчивость митохондриальной ДНК у фертильного и стерильного
аналогов линии НА89 подсолнечника с различными типами ЦМС
3.3.2.1. Митохондриальный геном ЦМС линии НА89(PET1)80
3.3.2.2. Митохондриальный геном ЦМС линии НА89(PET2)83
3.3.2.3. Митохондриальный геном ЦМС линии НА89(MAX1)
3.3.2.4. Митохондриальный геном ЦМС линии HA89(ANN2)102
ЗАКЛЮЧЕНИЕ
ВЫВОДЫ 116
Список сокращений118
Список литературы119
Приложение 1
Приложение 2
Приложение 3

ВВЕДЕНИЕ

Актуальность темы исследования. Доминирующая роль ядра в растительной клетке неопровержимо доказана многочисленными генетическими исследованиями. Однако в пластидах и митохондриях растительных клеток локализованы еще и собственные генетические системы (Stanley et al., 2015). Эти системы функционируют различно, но взаимосвязано. Взаимодействие генетических систем приводит к тому, что каждая из них влияет на другие, что в свою очередь приводит к направленным или канализированным изменениям в эволюционных и селекционных процессах (Woodson, Chory, 2008).

В основном, при рассмотрении механизмов видообразования во внимание принимаются только ядерные гены, в то время как роль цитоплазматических генов, часто недооценивают. Тем не менее, изучение структурно-функциональной организации геномов органелл также актуально с точки зрения современной систематики и филогенетики (Zhang et al., 2012).

Следует заметить, что к настоящему времени в базу данных NCBI включены полные последовательности хлоропластной ДНК (хлДНК) только 3 однолетних и 8 многолетних видов подсолнечника, а митохондриальной ДНК (мтДНК) только одного вида - *H. annuus*, что явно недостаточно для корректного анализа межвидовой внеядерной изменчивости в роде *Helianthus* L. В связи с этим исследование изменчивости хлоропластных и митохондриальных генов у однолетних и многолетних видов подсолнечника достаточно актуально.

В настоящее время в коммерческом производстве семян подсолнечника доминируют гетерозисные гибриды, полученные на основе цитоплазматической мужской стерильности (ЦМС) только одного типа PET1, открытого П. Леклерком еще в 1966 году у межвидового гибрида *H. petiolaris* Nutt. × *H. annuus L.* (Leclerq, 1969). Такая генетическая унификация цитоплазмы возделываемых гибридов может привести к различным негативным явлениям, например, массовым эпифитотиям (Miller, 1996).

Поскольку ЦМС растений представляет собой не только прекрасную модель, для изучения взаимодействия ядерных и цитоплазматических генетических систем клетки, но и эффективную мутацию для производства гибридных гетерозисных семян (Chen, Liu, 2014; Hu et al., 2014), дальнейший перевод лучших селекционных линий на новые типы ЦМС позволит избежать в

будущем рисков, связанных с унификацией цитоплазмона у коммерческих гибридов подсолнечника.

Степень разработанности темы. Полиморфный род *Helianthus*, по оценкам разных систематиков, включает от 10 до 254 видов (Анащенко, 1979; Schilling, Heiser, 1981; Rieseberg, 1991; Гаврилова, Анисимова, 2003). Эти классификации в основном базируются на анализе морфологических признаков растений, ареалах видов, кариотипах и результатах скрещиваний. В последнее время для вопросов систематики, включая и род *Helianthus*, все шире внедряются молекулярные методы анализа, в том числе высокопроизводительное секвенирование ДНК органелл (Bock et al., 2014; Stephens et al. 2015). Однако полные нуклеотидные последовательности хлДНК и мтДНК определены только у небольшого числа видов подсолнечника, что явно недостаточно для корректного анализа межвидовой внеядерной изменчивости в данном таксоне.

Цитоплазматическая мужская стерильность растений, как правило, вызвана нарушениями в структуре мтДНК (Horn et al., 2014). На сегодняшний день у подсолнечника выделено более 70 типов ЦМС (Ardila et al., 2010; Reddemann, Horn, 2018). Однако только для двух из них: PET1 (Kohler et al. 1991, Horn et al., 1996) и PET2 (Reddemann, Horn, 2018; Makarenko et al., 2018) выявлены специфичные реорганизации структуры митохондриальных геномов, связанные с ЦМС фенотипом.

Цель и задачи исследования. Целью работы является определение уровня изменчивости хлДНК мтДНК И у однолетних и многолетних видов (Helianthus L) подсолнечника И изучение особенностей структурнофункциональной организации хлоропластных и митохондриальных геномов у фертильной линии НА89 и ее ЦМС аналогов на основе однолетних (РЕТ1, РЕТ2 -H. petiolaris, ANN2 - H. annuus) и многолетнего (MAX1 - H. maximilliani) видов рода *Helianthus* L.

Исходя из поставленной цели, были сформулированы следующие задачи:

1. Исследовать полиморфизм хлоропластных и митохондриальных генов у образцов 5-и однолетних и 16-и многолетних видов подсолнечника из коллекции ВИР.

2. Провести высокопроизводительное секвенирование и определить уровень изменчивости хлДНК и мтДНК у линий культурной и дикорастущей форм *H annuus* L.

3. Провести секвенирование, сборку и аннотацию хлоропластных и митохондриальных геномов у фертильной линии НА89 и ее стерильных аналогов НА89(PET1), НА89(PET2), НА89(ANN2) и НА89(MAX1).

4. Определить структурные и функциональные особенности митохондриальных геномов у стерильных аналогов линии HA89 с различными типами ЦМС: PET1, PET2, ANN2 и MAX1.

Научная новизна исследования. Впервые определен уровень полиморфизма хлоропластных (atpB, matK, rbcL) и митохондриальных (atp1, *matR*, *nad4*) генов у образцов 5 однолетних и 16 многолетних видов рода Helianthus L. из коллекции ВИР. Проведено полногеномное секвенирование, сборка, аннотация и сравнительный анализ хлоропластных и митохондриальных культурной И дикорастущей форм *H. annuus* геномов L. Определены специфичные реорганизации митохондриальных геномов v ЦМС линий HA89(PET1), HA89(PET2), HA89(MAX1), HA89(ANN2).

Теоретическая и практическая значимость работы. Полученные данные о полиморфизме хлоропластных и митохондриальных генов образцов 21 вида подсолнечника вносят вклад в решение проблемы микроэволюции рода *Helianthus* L. Полиморфные сайты хлДНК и мтДНК, локализованные у культурного и дикорастущего подсолнечника *H. annuus* L. в результате анализа полных нуклеотидных последовательностей внеядерных геномов, являются информативными мишенями для генотипирования селекционных линий и образцов.

Данные об уровне мутационной изменчивости внеядерных геномов у аллоплазматических ЦМС линий подсолнечника вносят вклад в решение фундаментальной проблемы взаимодействия ядерных и цитоплазматических генетических систем растительной клетки, а также в изучение механизмов возникновения ЦМС у цветковых растений. Дальнейший перевод лучших селекционных линий на новые типы ЦМС позволит избежать в будущем рисков, связанных с унификацией цитоплазмона у гибридов подсолнечника.

Аннотированные полногеномные последовательности мтДНК ЦМС линий HA89(PET1), HA89(PET2), HA89(MAX1) депонированы в международную базу данных NCBI GenBank под номерами MG735191.1, MG770607.2, MH704580.1.

Результаты диссертационной работы включены в учебные курсы для студентов, специализирующихся на кафедре генетики Южного федерального университета.

Методология и методы исследования. В работе были использованы три уникальные генетические модели. Первая представляет собой образцы однолетних и многолетних видов рода *Helianthus* L из коллекции ВИР. Вторая включает 4 линии культурного и 1 дикорастущего подсолнечника *H. annuus*. Третья представлена фертильным и стерильными аналогами линии НА89 подсолнечника с различными типами ЦМС (PET1, PET2, ANN2, MAX), полученными на основе однолетних и многолетнего видов рода *Helianthus* L. Используя современные методы молекулярной генетики, сравнительной геномики и биоинформатики были определены и проанализированы последовательности хлоропластных и митохондриальных генов, а также исследован уровень изменчивости внеядерных геномов, что позволило в полной мере реализовать цель и задачи работы.

Положения, выносимые на защиту:

1. Частота мутаций в хлоропластных генах у представителей однолетних и многолетних видов рода *Helianthus* L. многократно превышает этот показатель в митохондриальных генах.

2. Дикорастущий подсолнечник *H. annuus* L. значительно отличается от селекционных линий по уровню изменчивости как хлДНК, так и мтДНК.

3. У стерильных аналогов линии НА89 с различными типами ЦМС частота точковых мутаций в хлДНК значительно выше, чем в мтДНК, однако только для митохондриальных геномов характерно наличие крупных реорганизаций структуры, уникальных для каждого типа ЦМС.

Апробация работы. Материалы диссертации были представлены на II и III Международной научной конференции «Генетика и биотехнология XXI века: проблемы, достижения, перспективы» (Минск, 2015, 2016); II Международной научно-практической конференции «Наука и образование сегодня: теория, практика и инновации – 2015» (Темрюк, 2015); Всероссийской конференции с международным участием «50 лет ВОГиС: успехи и перспективы» (Москва, 2016); Международной научной конференции, посвященная 90-летию Ботанического сада Южного федерального университета «Современные технологии в изучении биоразнообразия и интродукции растений» (Ростов-на-

Дону, 2017); Научно-практической конференции с международным участием «Генетика - фундаментальная основа инноваций в медицине и селекции» (Ростовна-Дону, 2017); Международной школе-конференции молодых ученых «Наука и молодежь: фундаментальные и прикладные проблемы в области селекции и генетики сельскохозяйственных культур» (Зерноград, 2017); XXV Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов-2018» (Москва, 2018)

Публикации. По теме диссертационной работы опубликовано 17 работ, из них 5 работ в изданиях, индексируемых в библиографических базах данных Scopus и Web of Science; 2 базы данных.

Связь с другими проектами.

Исследование выполнено в рамках государственного задания Минобрнауки России, проект № 6.929.2017/4.6.

Объем и структура диссертации. Работа состоит из введения, трех глав, заключения, выводов, списка литературы, приложений. Диссертация изложена на 163 страницах, включает 30 таблиц и 17 рисунков. Список цитируемой литературы содержит 132 источника, из них 122 на иностранных языках.

ГЛАВА 1. Обзор литературы 1.1. Систематика рода *Helianthus* L.

Род *Helianthus* по оценкам разных систематиков включает в себя от 10 до 254 видов (Гаврилова, Анисимова, 2003). Карл Линней в 1753 году впервые описал 9 видов подсолнечника, А. Грей в 1889 определила 42 вида, Уотсон – 108 Сациперов – 254 вида (Гаврилова, Анисимова, 2003). Данные видов. классификации в основном базировались на морфологических признаках, в связи с чем в ранг вида были включены разнообразные декоративные формы подсолнечника или подвиды. В середине XX века более детально вопросом систематики рода *Helianthus* занялся Ч. Хейзер с коллегами, которые предложили включить в род *Helianthus* 14 однолетних и 36 многолетних видов. произрастающих в Северной Америке и 17 видов – в Южной Америке (Heiser et al., 1969). В более поздней классификации (Schilling, Heiser, 1981) был выделен 51 вид подсолнечника, включая 14 однолетних и 37 многолетних видов. Эта классификация базируется не только на данных морфофизиологического анализа, но также учитывает, ареал произрастания, число хромосом и возможность Среди отечественных скрещиваемости видов. работ, можно выделить классификацию А.В. Анащенко (1977, 1979), согласно которой род Helianthus включает один однолетний вид – *H. annuus* (с тремя подвидами и шестью формами) и 9 многолетних видов (с тринадцатью подвидами). Данная классификация основывается на скрещиваемости и анализе геномного состава образцов дикорастущего подсолнечника мировой коллекции Всероссийского института растениеводства (ВИР) (Анисимова и др., 1982).

Виды рода *Helianthus* также подвергались разделению по секциям. Торрей и Грэй в 1843 году выделили шесть секций: *Annui, Angustifolii, Atrorubentes, Laetiflori, Corono-Solis* и *Microcephali*. Позже Грэй (1884 год) признал только две секции: *Annuals* и *Perennials* (Гаврилова, Анисимова, 2003). Уотсон (1929 год) предложил разделение по признаку окраски венчика на две секции: *Rubri* и *Flavi* (Гаврилова, Анисимова, 2003). Очевидно, что это разделение является

искусственным. С тех пор, как стало ясно, что существуют виды, у которых окраска венчика может варьировать, возможность использования этой классификации стала ограниченной. Ридберг в 1932 году определил только одну секцию среди однолетних и шесть секций среди многолетних видов, произрастающих в Северной Америке (Гаврилова, Анисимова, 2003). Однако, два вида – *H. chartaceus* и *H. hirsutus* – по его классификации принадлежат как к секции *Divaricati*, так и к секции *Tuberosi*.

Хейзер, чья классификация является наиболее распространенной среди исследователей, разделил род *Helianthus* на 4 секции, основываясь главным образом на способности видов к гибридизации (Heiser, 1965).

1. Секция *Annui* включает 14 однолетних видов, среди которых несколько имеют стержневую корневую систему, а остальные – мочковатую. Набор хромосом – диплоидный. Согласно данным филогении и способности к скрещиванию друг с другом все виды данной секции (кроме H. *similis, H. ludens* и *H. agrestis*) являются близкородственными. Позднее *H. similis* и *H. ludens* были отнесены к роду *Viguiera* (Schilling, Heiser, 1981).

2. Секция *Ciliares* включает 6 видов, произрастающих в западной части Северной Америки. Пять из шести видов имеют способность скрещиваться с любым видом из секции *Divaricati*. Эти гибриды морфологически неотличимы от представителей секции *Divaricati* (Heiser, 1965).

3. Секция *Divaricati* включает 30 видов, произрастающих на востоке Северной Америки и представляющих большую сложность для их идентификации. Набор хромосом у видов этой секции может быть диплоидным, тетраплоидным и гексаплоидным. Гибридизация возможна практически между всеми видами внутри секции, имеющими одинаковую плоидность набора хромосом.

4. Секция *Fruticosi* включает многолетние виды, произрастающие в Южной Америке. По всей вероятности, эти виды не близкородственны североамериканским и произошли непосредственно в Южной Америке от

представителей рода Viguiera. Позднее южноамериканские виды были отнесены к роду Helianthopsis.

Род *Helianthus* включает в себя большое количество видов, которые в процессе эволюции предположительно скрещивались между собой, в связи с чем реконструкция филогенетических взаимоотношений между ними является сложной задачей, в особенности для многолетних видов (Schilling, Heiser 1981; Timme et al. 2007). Объединение общирной информации о скрещиваемости видов (Heiser et al., 1969) с морфологическими признаками для 49 видов привело к важным открытиям в области установления родства видов и их филогении. Однако, данные о скрещиваемости имеют ограниченное применение для многолетних видов по причине их полиплоидности (Schilling, Heiser, 1981). Проведённое сравнение рестрикционных карт рибосомальных генов прояснило взаимоотношения между большей частью однолетних видов подсолнечника (Riesenberg, 1991). Анализ участка хлДНК позволило установить уникальный ДНК-штрих код для 4-х видов подсолнечника - *H. annuus, H. argophyllus, H. debilis, H. tuberosus* (Vischi et al., 2006).

Основательная работа по выяснению филогении рода Helianthus на основе молекулярных маркеров опубликована в 2007 году (Timme et al., 2007). Было проведено секвенирование обширного транскрибируемого спейсера. 18S-25S внутри региона ядерной ДНК, 47 видов расположенного y подсолнечника, позволило установить взаимоотношения ЧТО между многолетними видами, идентифицировать происхождение некоторых гибридов и полиплоидных групп, а также утверждать, что однолетние виды не составляют монофилетическую группу (Timme et al., 2007).

Данные секвенирования фрагментов хлДНК и ядерных внутренних транскрибируемых спейсеров в значительной степени способствовали пониманию степени родства как между основными группами внутри рода *Helianthus*, а так и между другими родами семейства *Asteraceae* (Kane et al., 2013). Важно отметить, что в разных популяциях один и тот же вид рода *Helianthus* может иметь разную

плоидность ядерного генома (Bock et al., 2014), что осложняет использование ядерных маркеров при анализе степени родства.

В 2014 году Дэн Бок с коллегами (Bock et al., 2014) впервые провел секвенирование полных нуклеотидных последовательностей хлДНК и частичных - мтДНК у 8 многолетних видов подсолнечника: *H. decapetalus, H. divaricatus,* H. giganteus, H. grosseserratus, H. hirsutus, H. maximiliani, H. strumosus, H. tuberosus. Данное исследование позволило установить филогенетические взаимоотношения предоставило между НИМИ, а также генетические доказательства полифилетического происхождения топинамбура (*H. tuberosus*). Наиболее масштабное молекулярное-филогенетическое исследование, основанное на данных секвенирования более 170 генов (ядерных и хлоропластных), у 37 диплоидных видов и подвидов рода Helianthus проведено Джесикой Стефанс с соавторами (Stephens et al., 2015).

1.2. Особенности структурно-функциональной организации хлоропластной ДНК цветковых растений

Еще в начале XX века были сделаны предположения о том, что хлоропласты растений содержат свой собственный генетический материал. Спустя более 50 лет наличие ДНК в пластидах было неопровержимо доказано целым рядом работ (Chun et al., 1963; Sager, Ishida 1963; Tewari, Wildman 1966).

Хлоропластная ДНК в значительной степени отличается от ядерной ДНК структурно-функциональной организацией и типом наследования (Bock, 2007). Хлоропластный геном имеет многочисленные прокариотические особенности, включая: структуру бактериального типа (кольцевая хромосома), упаковку генома в нуклеоиды, оперонную организацию генов (Даниленко, Давыденко, 2003). С другой стороны, пластидная ДНК обладает гораздо большей структурной сложностью, чем бактериальные геномы. Исследования показали, что помимо кольцевой формы хлДНК могут встречаться также линейные формы, в том числе в виде разветвленных мономеров и мультимеров (Krupinska et al., 2013)

Одной из основных особенностей пластидной ДНК является многокопийность. Каждая растительная клетка содержит много пластид, и каждая пластида содержит многочисленные копии ДНК. Так в одной растительной клетке может быть более 10 000 идентичных копий хлДНК (Bendich, 1987).

Количество копий пластидной ДНК зависит от ряда факторов: вида растения, типа ткани, стадии развития, условий окружающей среды и т.д. Показано что количество копий ДНК на клетку в процессе онтогенеза может изменяться многократно (Даниленко, Давыденко, 2003).

Полиплоидность пластидного генома, случайное распределение молекул хлДНК при митотических делениях клеток и, соответственно, пластидных генов приводит к неменделевскому типу наследования. Также полиплоидное состояние пластидных генов приводит к более низкой частоте закрепления в них мутаций по сравнению с ядерными генами (Drouin et al., 2008).

Более 40 лет назад были секвенированы первые пластидные геномы двух видов - *Marchantia polymorpha* и *Nicotiana tabacum*, что внесло огромный вклад в изучение молекулярно-генетических особенностей хлДНК (Bock, 2007). На сегодняшний день в банке данных NCBI находится информация о полных нуклеотидных последовательностях более 1000 видов цветковых растений (https://www.ncbi.nlm.nih.gov/genome/browse/#!/organelles/). Так у большинства цветковых растений размер хлоропластных геномов находиться в диапазоне 130-160 т.п.н. GC-состав хлДНК - в пределах 35-40 % (табл. 1.1). При этом низкое содержание G и C нуклеотидов особенно заметно в некодирующих межгенных областях, где может составлять всего 20 % нуклеотидного состава (Bock, 2007).

Изучение структурной организации хлоропластных геномов цветковых растений показало, что для большинства из них можно отметить значительное сходство: наличие двух инвертированных, повторяющихся регионов (inverted repeats – IRa и IRb), которые делят кольцевую ДНК пластид на большой однокопийный регион (large single copy region (LSC)) и малый однокопийный регион (small single copy region (SSC)). Примером может служить генетическая карта хлДНК подсолнечника (рис. 1.1), имеющая типичную организацию.

	Виды	Размер хлДНК, т.п.н.	GC-состав, %	Источник
Ð	Avena sativa	135,9	38,5	Saarela et al., 2015
PHBI	Oryza sativa	134,5	39	Tang et al., 2004
год	Sorghum bicolor	140,8	38,5	Saski et al., 2007
онд(Triticum aestivum	134,5	38,3	Ogihara et al., 2002
0	Zea mays	140,4	38,5	Maier et al., 1995
	Arabidopsis thaliana	154,5	36,3	Sato et al., 1999
Hble	Glycine max	152,2	35,4	Saski et al., 2005
под	Helianthus annuus	151,1	37,6	Timme et al., 2007
Дву,	Solanum lycopersicum	155,5	37,9	Kahlau et al., 2006
	Vitis vinifera	160,9	37,4	Jansen et al., 2006

Таблица 1.1. Размер и GC-состав хлоропластной ДНК у некоторых цветковых растений.

Размер регионов отличается даже у близкородственных видов (Bock, 2007). Интересно отметить, что у представителей рода *Pelargonium* описано значительное увеличение каждого IR региона до 75 т.п.н., что примерно в три раза превышает размер соответствующего участка у большинства цветковых растений (Chumley et al., 2006). Два инвертированных повтора имеют идентичные нуклеотидные последовательности, так что каждый ген, содержащийся в них, присутствует в молекуле хлДНК в двух копиях, которые отличаются только относительной ориентацией. Наличие двух крупных идентичных областей в хлДНК облегчает два типа генетических взаимодействий между гомологичными последовательностями, а именно: внутримолекулярную рекомбинацию и генную конверсию (Khakhlova, Bock 2006). Гомологичная рекомбинация между двумя IR регионами приводит к существованию двух изоформ пластидного генома, которые отличаются относительной ориентацией LSC и SSC (Marechal, Brisson, 2010). Частота мутаций в генах IR регионов ниже по сравнению с генами других регионов (LSC, SSC) хлДНК. Это связано с тем, что процессы генной конверсии протекают активнее в IR чем в LSC и SSC (Perry, Wolfe, 2002; Marechal, Brisson, 2010).

Рисунок 1.1. Генетическая карта хлоропластной ДНК подсолнечника (на основе данных Timme et al., 2007).

Среди трех геномов растительной клетки хлоропластный геном имеет наибольшую плотность генов, включая более 100 генов на 130-160 т.п.н. генома

(Bock, 2007). Хлоропластные гены цветковых растений, можно условно разделить на три основные группы (табл. 1.2) (Kahlau et al., 2006):

1) Гены (около 47) кодирующие белки, участвующие в фотосинтезе);

2) Гены (около 62), связанные с работой генетического аппарата пластид: гены рРНК и тРНК, гены, кодирующие рибосомальные белки и субъединицы РНК-полимеразы;

3) Гены биосинтеза (2 гена) и открытые рамки считывания (4 гена).

4	Отосинтез								
Фотосистема I (ФСІ)	psaA, psaB, psaC, psaI, psaJ, ycf3, ycf4								
Фотосистема II (ФСІІ)	psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ								
Цитохром b ₆ /f комплекс	petA, petB, petD, petG, petL, petN								
АТФ-синтаза	atpA, $atpB$, $atpE$, $atpF$, $atpH$, $atpI$								
Рибулозобисфосфаткарбоксилаза- оксигеназа	rbcL								
НАДН-дегидрогеназа	ndhA, ndhB, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK								
Белок тилакоидной мембраны	cemA								
Генетическ	ие функции пластид								
Инициация транскрипции	infA								
РНК полимераза	rpoA, rpoB, rpoC1, rpoC2								
Матураза	matK								
Протеаза	clpP								
Рибосомальные РНК	rrn4.5, rrn5, rrn16, rrn23								
Рибосомальные белки	rps2, rps3, rps4, rps7, rps8, rps11, rps12, rps14, rps15, rps16, rps18, rps19, rpl2, rpl14, rpl16, rpl20, rpl22, rpl23, rpl32, rpl33, rpl36								
Транспортные РНК	trnA-UGC, trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnG-GCC, trnG-UCC, trnH-GUG,								

Таблица 1.2. Гены, кодируемые хлоропластной ДНК.

	trnI-CAU, trnI-GAU, trnK-UUU, trnL-CAA,
	trnL-UAA, trnL-UAG, trnM-CAU, trnfM-CAU,
	trnN-GUU, trnP-UGG, trnQ-UUG, trnR-ACG,
	trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU,
	trnT-UGU, trnV-GAC, trnV-UAC, trnW-CCA,
	trnY-GUA
Био	синтези ОРС
Ацетил-СоА-карбоксилаза	accD
Комплекс биосинтеза цитохрома С	ccsA
Неизвестная функция	ycf1, ycf2, ycf15, sprA

Для большинства цветковых растений число и состав генов соответствует описанному в таблице 1.2. Однако, у паразитических покрытосеменных растений, пластидные геномы радикально отличаются по числу генов. У паразитических растений отсутствует способность к автотрофному питанию, что отражается на числе активно транскрибирующихся хлоропластных генов, главным образом за счет потери или псевдогенизации фотосинтических генов. Например, хлДНК паразитического растения *Epifagus virginiana* (семейство *Orobanchaceae*) состоит всего из 70 т.п.н., что в два раза меньше, чем у большинства фотосинтезирующих цветковых растений, и содержит всего 25 белок кодирующих генов, 4 гена рРНК и 23 тРНК (Wolfe et al., 1992). У другого паразита *Lathraea squamaria* (семейство *Orobanchaceae*) хлДНК имеет размер 150,5 т.п.н., а 35 генов (преимущественно связанных с фотосинтезом) превратились в псевдогены (Samigulin et al., 2016).

Транскрипция пластидных генов – сложный процесс, в регуляции которого задействован ряд молекул: РНК-полимеразы, сигма-факторы, транскрипционные регуляторы, белки пластидных нуклеоидов и различные сигнальные молекулы (Синявская и др., 2015). Транскрипция пластидного генома цветковых растений в значительной степени зависит от экспрессии генома ядра. Экспрессия пластидных генов осуществляется двумя разными типами полимераз: РНК-полимеразой бактериального типа (РЕР), большинство субъединиц которой кодируются в хлДНК и фагоподобной РНК-полимеразой (NEP), кодируемой ядром (Borner et al.,

2015). РНК-полимеразы распознают разные типы промоторов и отличаются транскрипционной активностью в разных типах пластид. Важным отличием от ядерных генов является то, что большинство пластидных генов транскрибируются в виде полицистронных матриц. Гены, кодирующие белки с общими функциями, в ряде случаев экспрессируются в составе одного оперона, что определяет их скоординированную работу и стехиометрическую аккумуляцию. Примером является *гроВ* оперон, в состав которого входят три гена РНК полимеразы *гроВ*, *гроС1, гроС2*. У разных видов растений пластидные опероны консервативны (Синявская и др., 2015).

1.3. Особенности структурно-функциональной организации митохондриальной ДНК цветковых растений

Организация митохондриальной ДНК, как и хлоропластной ДНК, во многом Тем схожа с таковой прокариотических организмов. y не менее митохондриальный геном растений характеризуется большим количеством особенностей, отличающих его от ядерного и хлоропластного геномов. Митохондриальный геном высших растений отличается уникальностью его размеров, а также сложностью и особенностями эволюционной динамики. Он в десятки и даже сотни раз больше по величине, чем митохондриальные геномы животных, грибов и пластидные геномы растений и может составлять 150-2900 т.п.н. (Daniell, Chase, 2004, Alverson et al., 2010). По сравнению с хлДНК размер мтДНК сильно варьируется даже у близкородственных видов (Gualberto et al., 2014). Например, у некоторых представителей семейства *Cucurbitaceae* хлДНК варьируется в пределах 155-157 т.п.н., при этом размер мтДНК отличается многократно, находясь в пределах 380-2740 т.п.н. (табл. 1.3)

Большой вклад в увеличение размера митохондриального генома растений вносят повторяющиеся последовательности, АТ-богатые некодирующие регионы и протяженные интроны. Наличие протяженных повторов - уникальное свойство генома митохондрий растений. Количество таких повторов в митохондриальном геноме растений сильно варьирует: *Nicotiana tabacum* содержит 3 пары больших повторов размером 18 т.п.н., 6,9 т.п.н. и 4,7 т.п.н. (Sugiyama et al., 2005), у *Helianthus annuus* обнаружено два повтора размером 12,9 п.н. и шесть повторов размером 200-750 п.н. (Makarenko et al., 2018), а у *Triticum aestivum* – 10 пар повторов (Ogihara et al., 2005).

Таблица 1.3. Размер хлоропластного и митохондриального геномов у некоторых видов рода *Cucurbitaceae*.

Вид	Размер хлДНК(т.п.н.)	Размер мтДНК(т.п.н.)	Источники
Citrullus lanatus	156.9	379.2	Alverson et al., 2010
Cucurbita pepo	156.3	982.8	Alverson et al., 2010, Zhang et al., 2018
Cucumis sativus	155.3	1685	Plader et al., 2007, Alverson et al., 2010
Cucumis melo	156	2740	Rodriguez-Moreno et al., 2011

Также размер мтДНК растений может сильно варьировать даже внутри одного вида из-за включения ядерных и хлоропластных последовательностей (Morley, Nielsen, 2017). Большая часть нуклеотидной последовательности мтДНК цветковых растений является некодирующей, поэтому различия в количестве митохондриальных генов между разными видами растений не зависят от размера митохондриального генома. Например, последовательность митохондриального генома огурца (*Cucumis sativus*) более чем на 1300 т.п.н. превышает размер мтДНК резуховидки Таля (*Arabidopsis thaliana*), но при этом содержит всего на 4 белок-кодирующих гена больше (Alverson et al., 2011).

Еще одной особенность мтДНК цветковых растений является ее плоидность в клетке. Плоидность мтДНК растений значительно ниже, чем таковая животных, а также чем плоидность хлДНК растений. Результаты анализа плоидности нескольких митохондриальных генов у *Arabidopsis thaliana*, *Nicotiana tabacum* и *Hordeum vulgare* показали, что отдельные митохондрии могут содержать только

часть генома или не содержать ДНК вообще (Preuten et al., 2010). Тем не менее, плоидность мтДНК в растительной клетке выше, чем плоидность ядерной ДНК. Количество копий мтДНК на одну митохондрию варьирует от 50 до 500 единиц и зависит от вида растения, типа ткани, возраста растения, условий окружающей среды. На примере кукурузе было показано, что с увеличением возраста растения количество копий мтДНК снижается (Oldenburg et al., 2013). А клетки корневой системы растений, как правило, содержат значительно больше копий мтДНК, чем клетки листа (Kumar et al., 2014; Ma, Li, 2015).

Наиболее отличительной особенностью молекул мтДНК растений является динамичность структуры. В 70-80-х годах XX века было положено начало исследованиям структуры митохондриальной ДНК растений. Метод электронной микроскопии позволил выявить как кольцевые, так и линейные молекулы мтДНК в различных соотношениях (Даниленко, Давыденко, 2003). Считалось, что митохондриальный геном растений представляет собой кольцевую хромосому, а обнаруженные линейные молекулы являются результатом ее повреждения в процессе приготовления препарата для электронной микроскопии. Однако, в результате дальнейших исследований мтДНК были выявлены кольцевые молекулы меньшего размера, чем «главная хромосома», а также линейные молекулы с одним или несколькими разветвлениями, сложные розеткообразные молекулы. Позже было показано, что в митохондриях только малая доля молекул мтДНК представлены, так называемой «основной кольцевой хромосомой», которая содержит весь набор митохондриальных генов и соответствующая по размеру полному геному (Allen et al., 2007; Smith, Keeling 2013). Чаще молекулы ДНК в митохондриях представлены в виде большого числа субгеномных колец и линейных молекул (Liu et al., 2011; Wu et al., 2015), что несомненно, осложняет исследование мтДНК.

Наличие большого числа различных структурных изоформ мтДНК связано, в том числе, и с высокой частотой рекомбинации мтДНК (Wu et al., 2015). В последовательностях мтДНК цветковых растений присутствует большое число гомологичных повторов, которые подвергаются частым гомологичным

рекомбинациям, приводящим к образованию многочисленных конфигураций молекул мтДНК (рис. 1.2) (Sloan, 2013, Gualberto et al., 2014). Нарушение гомологичной рекомбинации или же ошибки при процессах репарации, приводят к накоплению альтернативных конфигураций мтДНК, которые вносят вклад в гетерогенность изоформ молекул мтДНК (Alverson et al., 2011; Sloan et al., 2012).

Рисунок 1.2. Модели преобразования конфигураций структуры митохондриального генома растений. А – Классическая модель, показывающая как при рекомбинации между гомологичными повторами (обозначены зеленым цветом) главной хромосомы могут образовываться субгеномные кольца. Б – Альтернативные модель, показывающая образование линейных форм мтДНК из кольцевой формы (Sloan, 2013).

Имеются также данные о том, что структура мтДНК может изменяться в зависимости от условий окружающей среды. Например, в условиях стресса

растения могут снижать экспрессию ядерных генов, которые способствуют подавлению рекомбинации между короткими повторами митохондриального генома (Davila et al., 2011). Так, например, можно объяснить наличие обширных структурных перестроек генома митохондрий и высокую частоту встречаемости суперспирализованных молекул мтДНК при выращивании растительных тканей в условия *in vitro* (Sun et al., 2012).

Благодаря увеличению доступности секвенирования растительных митохондриальных геномов стало возможным обнаружить существенные различия в ее структурной организации между видами. Например, в результате недавних исследований было установлено, что в процессе эволюции как минимум в двух независимых группах покрытосеменных появились мультихромосомные митохондриальные геномы. Впервые такой геном был обнаружен у огурца (*Cucumis sativus*). Митохондриальный геном этого вида имеет размер 1685 т.п.н., и большая его часть представлена в виде основной кольцевой хромосомы размером 1556 т.п.н. (Alverson et al., 2011). Кроме основной кольцевой хромосомы также выявлены еще две автономные кольцевые хромосомы размером 45 т.п.н. и 84 т.п.н., содержащие общую пару рекомбинационных повторов размером 3,6 т.п.н. Эти две хромосомы могут существовать и в объединенной конформации – кольцевой молекулы размером 129 т.п.н. Митохондриальные хромосомы размером 45 т.п.н. и 84 т.п.н. огурца не имеют больших гомологичных повторов с основной хромосомой, и до сих пор не доказана возможность рекомбинации между ними и основной митохондриальной хромосомой. Также не было обнаружено сходство хромосом с митохондриальными плазмидами (Alverson et al., 2011). Такая мультихромосомная организация митохондриального генома огурца отличается от типичной структуры мтДНК других видов растений.

Мультихромосомная организация митохондриального генома также была обнаружена у представителей рода *Silene (Caryophyllaceae)* (Sloan et al., 2012). Изучение нескольких популяций *S. vulgaris* показало, что митохондрии представителей данного вида содержат от одной до четырех небольших автономных хромосом, составляющих от 1 до 15 % от всего митохондриального

генома (Sloan et al., 2012). Интересно, что многие из мелких автономных хромосом *Cucumis* и *Silene* не содержат генов, в связи с чем неясно, какую функциональную роль они играют (Alverson et al., 2011; Sloan et al., 2012). Вопрос о том, как мультихромосомные митохондриальные геномы подвергаются репликации и как они наследуются при делении митохондрий, остается открытым.

Отличительной чертой организации митохондриального генома растений является наличие митохондриальных плазмид - кольцевых или линейных молекул ДНК размером 1-20 т.п.н., негомологичных геномной мтДНК (Handa, 2008, Gualberto et al., 2014). Митохондриальным плазмидам свойственна способность автономной репликации, в связи с чем они находятся в высокой стехиометрии относительно основного митохондриального генома. Паттерн митохондриальных плазмид видоспецифичен, но, тем не менее, могут наблюдаться его вариации внутри вида (Gualberto et al., 2014). Последовательности большинства плазмид растений не имеют сходства с основным митохондриальным геномом, а также не могут считаться субгеномными молекулами (Robison, Wolyn, 2005). На сегодняшний день не выявлено корреляций между наличием плазмид и какимилибо фенотипическими признаками, однако количество митохондриальных плазмид в клетках не постоянно и изменяется в течение развития растения (Handa, 2008). Несмотря на автономность митохондриальных плазмид их появление и количество копий частично зависят от влияния ядра растительной клетки (Gualberto et al., 2014).

Плазмиды митохондрий растений могут быть разделены на два класса: кольцевые и линейные. Кольцевые плазмиды были обнаружены у многих видов растений: кукурузы, свеклы, сорго, фасоли, подсолнечника, риса и др. (Даниленко, Давыденко, 2003). Размер кольцевых плазмид чаще всего колеблется в промежутке от 1 до 2,5 т.п.н., но иногда встречаются плазмиды размером 9 т.п.н. и более (Gualberto et al., 2014). Не было установлено гомологии кольцевых плазмид ни с мтДНК, ни с хлДНК, однако плазмиды могут включать последовательности нуклеотидов, имеющие сходство с ядерной ДНК (Даниленко,

Давыденко, 2003). Из-за небольшого размера кольцевых плазмид в них не было обнаружено протяженных (более 1 т.п.н.) открытых рамок считывания. Но в плазмидах выявлены небольшие (до 1 т.п.н.) транскрипционно активные ОРС, функция которых до сих пор не ясна (Gualberto et al., 2014) Примечательно, что была показана взаимосвязь между ЦМС фенотипом *Beta vulgaris* и ОРС, транскрибирующейся в кольцевой плазмиде (Thomas, 1986).

Линейные плазмиды были обнаружены у многих видов растений, в том числе: кукурузы, свеклы, сорго, капусты, моркови и др. (Handa, 2008). Линейные плазмиды по сравнению с кольцевыми плазмидами встречаются в митохондриях растений реже, но обычно состоят из большего числа нуклеотидов - от 2 до 20 т.п.н. (Handa, 2008, Gualberto et al., 2014). Также линейные плазмиды обычно содержат терминальные инвертированные повторы, и их 5'-концы ковалентно связаны со специфичными белками, предположительно участвующими в инициации репликации на обоих 5'-концах. Такие признаки делают линейные плазмиды схожими с митохондриальными плазмидами грибов, вирусными ДНК и транспозонами (Handa, 2008). На данный момент наиболее изученными являются S1, S2 и 2,3 т.п.н. плазмиды Zea mays, 10,4 т.п.н. плазмида Beta vulgaris и 11,6 т.п.н. плазмида *Brassica napus* (Handa, 2008). Все линейные плазмиды (кроме 2,3) т.п.н. плазмиды Z. mays) содержат несколько открытых рамок считывания (до 6 в 11,6 т.п.н. плазмиде *В. париз*), по длине превышающих таковые в кольцевых плазмидах. Считается, что некоторые линейные плазмиды кодируют ДНК- или РНК-полимеразы фагового типа. Наличие генов ДНК- и РНК-полимераз в линейных плазмидах поддерживает идею о том, что они способны к автономной репликации и транскрипции (Smith, Keeling, 2013). Для 11,6 т.п.н. плазмиды В. napus была установлена экспрессия открытых рамок считывания с неизвестной функцией, которые скорее всего являются функционально активными генами (Gualberto et al., 2014).

В митохондриях растений также были идентифицированы РНК-плазмиды, которые являются наименее изученной группой. Они были обнаружены у сахарной свеклы, кукурузы, риса и представителей рода *Brassica* (Даниленко,

Давыденко, 2003). Для РНК-плазмид не было выявлено гомологии с ДНКплазмидами. Происхождение данного типа плазмид неясно.

Митохондриальным плазмидам свойственно однородительское наследование по материнскому типу. Тем не менее, отклонение от строго однородительского наследования наблюдается у 10,4 т.п.н. плазмиды *B. vulgari* и 11,6 т.п.н. плазмиды *B. napus* (Oshima, Handa, 2012).

Происхождение митохондриальных плазмид по большей части неизвестно. Сходство между нуклеотидными последовательностями некоторых кольцевых плазмид у разных видов растений предполагает наличие общего предка (Gualberto et al., 2014). Однако, в митохондриальных плазмидах часто встречаются последовательности, представленные в ядерном геноме растений, что может свидетельствовать о возникновении митохондриальных плазмид из ядерной ДНК, вследствие передачи генетической информации между двумя геномами. Последовательности открытых рамок считывания и структурная организация линейных плазмид отличаются у разных видов, что в свою очередь свидетельствует об их независимом происхождении (Handa, 2008). И, наконец, существуют предположения о том, что горизонтальный перенос ДНК, в частности, от грибов, мог сыграть роль в появлении митохондриальных плазмид (Handa, 2008).

Большой размер митохондриального генома растений не соответствует его кодирующей способности. Например, митохондриальный геном подсолнечника, в два раза больше по размерам, чем хлоропластный, но содержит почти вдвое меньше генов (Makarenko et al., 2016). В мтДНК цветковых растений содержится только небольшая часть генов (50-60) необходимых для функционирования митохондрий. Подавляющее большинство генов, обеспечивающих митохондриальные функции, детерминировано в ядре. Часть митохондриальных генов обеспечивают экспрессию и трансмиссию генетической системы мтДНК, в том числе: *matR*, гены рибосомальной РНК (*rrn5, rrn18, 26*) и тРНК, гены, кодирующие рибосомальные белки (Даниленко, Давыденко, 2003).

Гены тРНК обнаруженные в мтДНК цветковых растений могут иметь как митохондриальное так и пластидное происхождение. Набор митохондриальных тРНК отличается у однодольных и двудольных растений, например, ген *trnG* отсутствует в мтДНК большинства однодольных растений (Liao, et al., 2018). В таблице 1.4 отражено число генов тРНК выявленных у разных видов цветковых растений (Knoop, 2004, Daniell, Chase, 2004, Liao, et al., 2018). Следует заметить, что у цветковых растений число генов тРНК, кодируемых мтДНК, недостаточно для трансляции всех протеиногенных аминокислот, в связи с чем часть тРНК кодируется в ядре и затем импортируется в митохондрии (Даниленко, Давыденко, 2003).

Однодольные виды										Дe	вудол	ІЬНЫ	е ви,	ды				
Ген	Hordeum vulgare	Oryza sativa	Sorghum bicolor	Triticum aestivum	Zea mays	Arabidopsis thaliana	Brassica juncea	Brassica napus	Brassica oleracea	Cucumis melo	Cucurbita pepo	Glycine max	Nicotiana tabacum	Raphanus sativus	Ricinus communis	Vicia faba	Vigna radiate	Vitis vinifera
			Т	РНК	МИТ	охон	дриа	льно	ого п	роис	схож	дени	Я					
trnC-GCA	0	1	0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
trnD-GUC	3	1	1	2	3	0	1	1	1	0	0	0	1	1	2	0	0	1
trnE-UUC	1	1	1	1	2	1	1	1	0	1	1	1	1	1	1	1	1	1
trnF-GAA	1	0	2	0	0	0	0	0	0	1	1	1	0	0	1	1	1	1
trnG-GCC	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
trnH-GUG	0	0	0	1	0	0	0	0	1	0	0	0	1	0	1	1	0	1
trnI-CAU	1	2	1	0	2	1	1	1	1	0	1	1	1	1	0	0	1	0
trnK-UUU	3	1	1	4	1	5	1	1	1	0	1	1	1	1	1	2	1	2
trnL-UAA	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
trnM-CAU	2	1	1	3	1	1	0	1	2	3	0	0	0	1	3	0	0	0
trnfM-CAU	3	1	1	2	1	1	1	1	0	0	1	4	2	1	0	1	2	2
trnN-GUU	0	1	0	0	1	1	0	0	0	0	0	1	2	0	0	0	0	0

Таблица 1.4. Гены тРНК в митохондриальных геномах цветковых растений

trnP-UGG	1	2	1	2	2	1	1	1	1	1	1	0	1	1	2	1	1	1
trnQ-UUG	2	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
trnR-UCU	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
trnS-AGA	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
trnS-GGA	1	0	0	0	0	0	1	1	1	0	0	0	0	0	0	1	0	0
trnS-UGA	0	1	0	1	1	2	1	1	1	1	0	0	1	1	1	0	0	1
trnS-GCU	1	1	1	1	1	2	1	1	1	0	0	1	1	2	1	0	1	1
trnY-GUA	1	1	1	1	1	3	1	1	1	1	1	1	1	1	1	1	1	1
	1		1	тР	НК	плас	тидн	ого і	прои	схож	сдени	Я		1	1			
trnC-GCA	1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
trnD-GUC	0	0	0	0	0	1	0	0	0	3	0	1	1	0	0	1	0	1
trnE-UUC	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
trnF-GAA	0	1	1	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0
trnG-UCC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
trnH-GUG	0	1	1	0	1	0	2	1	1	3	1	1	0	1	0	0	1	0
trnI-CAU	0	0	0	0	2	0	0	0	0	0	0	0	1	0	0	0	0	0
trnK-UUU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
trnL-UAG	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
trnL-CAA	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
trnM-CAU	0	1	1	0	0	0	0	0	0	2	1	1	1	0	0	1	1	0
trnfM-CAU	2	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
trnN-GUU	1	0	1	1	1	0	1	1	1	2	1	0	0	1	1	1	1	3
trnP-UGG	0	0	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2
trnR-ACG	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0
trnR-UCU	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
trnS-AGA	1	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
trnT-GGU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
trnW-CCA	0	1	1	1	1	0	1	1	1	1	6	0	1	1	1	1	1	1
trnY-GUA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Гомология и количество митохондриальных белок кодирующих генов растений еще малоизучены. Число белок кодирующих митохондриальных генов различается у разных видов цветковых растений, при этом набольшие вариации наблюдаются в числе генов рибосомальных белков (табл. 1.5).

Таблица 1.5. Гены, кодирующих рибосомальные белки, в митохондриальных геномах цветковых растений.

	O)	цнол	етни	е ви,	ды					MH	югол	етни	е ви	ды				
Ген	Hordeum vulgare	Oryza sativa	Sorghum bicolor	Triticum aestivum	Zea mays	Arabidopsis thaliana	Brassica juncea	Brassica napus	Brassica oleracea	Cucumis melo	Cucurbita pepo	Glycine max	Nicotiana tabacum	Raphanus sativus	Ricinus communis	Vicia faba	Vigna radiate	Vitis vinifera
rpl2	-	+	-	-	-	+	+	+	+	+	+	-	+	+	-	-	-	+
rpl5	+	+	-	+	-	+	+	+	+	-	+	-	+	+	+	+	+	+
rpl10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-
rpl14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
rpl16	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
rpl20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
rpl32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
rpl33	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
rpl36	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+
rps1	+	+	+	+	+	-	-	-	-	+	+	+	-	-	+	-	+	+
rps2	+	+	-	+	+	-	-	-	-	-	-	-	-	-	-	+	-	-
rps3	+	+	+	+	+	+	+	+	+	+	+	-	+	-	+	+	+	+
rps4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
rps7	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	-	-	-
rps8	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-
rps10	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
rps12	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
rps13	+	+	+	+	-	-	-	-	-	+	+	+	+	-	+	-	-	-

rps14	+	-	-	-	+	-	+	+	+	-	+	+	+	+	-	+	+	+
rps19	-	+	-	+	-	-	-	-	-	-	-	-	+	-	+	-	-	+

Известно, что митохондриальный геном растений кодирует ряд компонентов электрон транспортных комплексов. НАДН-дегидрогеназный комплекс (комплекс I), имеющий огромное значение для протекания процессов клеточного дыхания и окислительного фосфорилирования, у растений состоит из более чем 40 субъединиц (Klodmann et al., 2010, Sazanov 2012). В основном в мтДНК цветковых растений локализованы 9 генов, кодирующих субъединицы НАДН-дегидрогеназного комплекса - nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9.

Сукцинатдегидрогеназа (комплекс II) участвует как в цикле трикарбоновых кислот, так и дыхательной цепи переноса электронов и состоит из 8 субъединиц: 4-х субъединиц характерных для всех эукариот и 4-х субъединиц специфичных для растений (Millar, et al 2004; Popov et al., 2010) У растений только два гена (*sdh3, sdh4*) сукцинатдегидрогеназы локализованы в мтДНК, при этом у большинства цветковых растений эти гены транслоцированы в ядерный геном (Wendel et al., 2012, Liao, et al., 2018).

За исключением цитохрома-*b* (митохондриальный ген *cob*) все белки комплекса цепи переноса электронов цитохромов *b*-*c1* (комплекс III) кодируются в ядре.

Цитохром *с*-оксидаза (комплекс IV) катализирует перенос электронов с цитохрома-*с* на кислород и состоит из 14 субъединиц (Millar, et al 2004). Три основные субъединицы комплекса IV (гены *coxI, coxII, coxIII*) кодируются в мтДНК цветковых растений, за исключением некоторых представителей бобовых, у которых ген *coxII* может находиться в ядерной ДНК (Alverson et al., 2011, Wendel et al., 2012).

АТФ-синтаза (комплекс V) состоит из 11 субъединиц. У большинства растений 5 из 11 субъединиц кодируются митохондриальными генами: atp1, atp4, atp6, atp8, atp9 (Wendel et al., 2012, Liao, et al., 2018).

Также в мтДНК цветковых растений локализованы, как правило, 4 гена биосинтеза циохрома-c - ccmB, ccmC, ccmFc ccmFn (Wendel et al., 2012, Liao, et al., 2018). У многих растения митохондриальный геном включает еще и слабоизученный ген *mttB* (синонимы *orfX*, *tatC*, *ymf16*), белковым продуктом которого является транслоказа. Функция транслоказы сводиться к межмембранному транспорту других белков (Wendel et al., 2012).

У некоторых видов митохондриальные гены могут быть дуплицированы, например, ген *atp6* y *Arabidopsis thaliana* и *Glycine max*, ген *atp1* y *Cucumis melo*, *Vicia faba*, *Vitis vinifera*, *Zea mays* (Liao, et al., 2018).

Кроме генов с известной функцией митохондриальный геном растений включает большое число открытых рамок считывания. В мтДНК *Arabidopsis thaliana* выявлено более 100 OPC состоящих, преимущественно из 150-350 п.н. (Sloan, et al., 2018). Большинство OPC не несут никакой функциональной нагрузки и являются случайными образованиями. Но некоторые OPC активно транскрибируются и являются консервативными у разных видов, в связи с чем, можно говорить о них как о генах, функции которых пока неясны. Примером таких активно экспрессирующихся OPC у подсолнечника являются *orf777*, *orf873* (Makarenko et al., 2018).

В состав некоторых ОРС входят последовательности идентичные митохондриальным генам, такие ОРС, можно назвать химерными генами (Даниленко, Давыденко, 2003). Химерные гены нарушают баланс взаимодействия между ядерным и митохондриальными геномами, и тем самым могут привести к возникновению фенотипа с цитоплазматической мужской стерильностью (ЦМС). Цитоплазматическая мужская стерильность (ЦМС) - наследуемая по материнской линии неспособность растений продуцировать жизнеспособную пыльцу, причиной которой чаще всего являются мутации в мтДНК (Анисимова, Гавриленко, 2016). Явление ЦМС широко распространено среди растений, описано у более чем 150 видов цветковых растений (Chen, Liu, 2014). В естественных популяциях растений ЦМС фенотип может возникнуть как из-за спонтанных мутаций в мтДНК, так и в результате межвидовой гибридизации при

несовместимости внутриклеточных геномов (Даниленко, Давыденко, 2003). ЦМС-Rf системы широко используются для получения гибридных семян F1 различных сельскохозяйственных культур: подсолнечника, кукурузы, свеклы, моркови, сорго, риса и др. (Liu et al., 2011; Kubo et al., 2011).

МтДНК ЦМС-типа обычно характеризуется множественными структурными перестройками, некоторые из них изменяют кодирующие части либо образованию генов ИХ локализацию И приводят К химерных транскрибируемых рамок считывания (Брагин и др., 2011). Довольно редко ЦМС фенотип возникает из-за нарушений в генах НАДН-дегидрогеназного комплекса (Horn et al., 2014). Делеции экзонов гена nad7 являются причиной двух ЦМС типов Nicotiana sylvestris (Gutierres et al., 1997). В мтДНК ЦМС линии RT98A Oryza rufipogon возникает новая открытая рамка считывания - orf113. Orf113 состоит из последовательности нуклеотидов идентичных гену nad9, и неизвестной последовательности (Igarashi et al., 2013). Более частой причиной ЦМС фенотипа цветковых растений являются химерные гены цитохром соксидазы. В мтДНК ЦМС линии Sorghum bicolor обнаружен измененный ген coxI: с удлинённой последовательностью на 3' и 5' концах и кодирующий белок, содержащий на 101 аминокислоту больше, чем нормальный белок (Bailey-Serres et al., 1986). Причиной ЦМС у Raphanus sativus является - orf463, состоящий из части гена coxI и 1261 п.н. неизвестного происхождения (Park et al., 2013). Cox2химерные гены являются причиной ЦМС у кукурузы, риса, свеклы, петуньи (Даниленко, Давыденко, 2003, Horn et al., 2014). Наиболее частой причиной ЦМС фенотипа цветковых растений становится наличие в митохондриальном геноме atp6-, atp8-, atp9-химерных генов (Hanson, Bentolila, 2004; Horn et al., 2014). Химерные гены АТФ-синтетазы обнаружены у кукурузы (Dewey et al., 1987), сои (Jiang, 2011), горчицы (Dieterich et al., 2003), подсолнечника (Reddemann, Horn, 2018) и др.

Митохондриальные гены растений могут быть представлены единичным экзоном или же иметь интрон-экзонную структуру. У покрытосеменных наибольшее количество интронов обнаружено в генах, кодирующих субъединицы

НАДН-дегидрогеназы - *nad1*, *nad2*, *nad4*, *nad5*, *nad7* (Liao, et al., 2018). Как правило, в генах *cob*, *coxI*, *coxII* у цветковых растений присутствуют интроны (Daniell, Chase, 2004, Wendel et al., 2012). В митохондриальных генах принято различать интроны I и II группы, которые имеют структурные отличия и механизмы сплайсинга (Knoop, 2004).

Полногеномное секвенирование значительно способствует пониманию генетических особенностей митохондрий. На сегодняшний день получены полные нуклеотидные последовательности мтДНК у более чем 1000 видов растений (http://megasun.bch.umontreal.ca/ogmp/projects/other/mt_list.html), однако только часть аннотирована. Примером митохондриального генома с ИЗ НИХ локализованными генами является мтДНК Arabidopsis thaliana (рис. 1.3). Митохондриальный геном модельного организма Arabidopsis thaliana был полностью секвенирован и аннотирован еще в 1997 году (Unseld et al., 1997). При этом за последние 20 лет информация о его мтДНК неоднократно дополнялась и уточнялась (Sloan, et al., 2018).

Митохондриальная ДНК цветковых растений также имеет ряд особенностей реализации наследственной информации на уровне транскрипции, сплайсинге и процессинге мРНК. Обнаружено, что отличительной чертой транскрипции мтДНК является образование с одного участка генома большого числа варьирующих в размерах мРНК молекул (Даниленко, Давыденко, 2003). Многие митохондриальные гены имеют несколько промоторов, как правило, состоящих из 17-18 п.н. Митохондриальные гены, подобно хлоропластным, экспрессируются как в виде индивидуальных транскриптов, так и в составе полицистронных матриц. Некоторые кластеры генов консервативны среди высших растений, например, *rrn5-rrn18*, *nad1-matR*, *rps12-nad3*, *rps3-rp116* (Liao, et al., 2018). Ключевую роль в регуляции транскрипции митохондриальных генов играет ядерный геном. В отличие от хлДНК в мтДНК нет генов РНК-полимеразы, а сам фермент кодируется ядерной ДНК.

Рисунок 1.3. Генетическая карта митохондриальной ДНК подсолнечника (на основе данных Sloan, et al., 2018).

Интересным является сплайсинг митохондриальных генов. Показано, что в условиях *in vitro*, интроны некоторых митохондриальных генов могут самосплайсироваться без участия дополнительных факторов, таких как белки или РНК (Knoop, 2004; Daniell, Chase, 2004). Примечательно, что для некоторых митохондриальных генов (*nad1, nad2, nad5*) покрытосеменных растений характерен транс-сплайсинг (Daniell, Chase, 2004; Wendel et al., 2012; Liao, et al., 2018).

Характерной посттранскрипционной модификацией мРНК в митохондриях является ее редактирование (Daniell, Chase, 2004). В мРНК цитозин может подвергаться превращению в уридин (C-U редактирование), что в свою очередь может приводить к изменению кодона CGG на UGG и замене в белках аргинин на триптофан (Gray, 2009). Также редактирование РНК может приводить к новым стартовым кодонам (замена ACG на AUG) или стоп кодонам (замена CGA на UGA). Например, у большинства покрытосеменных в мРНК гена *nad1* кодон инициации трансляции (AUG) возникает именно за счет редактирования первичного транскрипта (Daniell, Chase, 2004). Исследования показали, что у растений некоторые митохондриальные мРНК также подвергаются так называемому «обратному редактированию», то есть замене уридина на цитозин (Wendel et al., 2012).

Таким образом, геномы энергетических органелл растительной клетки, имеют как сходные, так и уникальные черты структурно-функциональной организации и отличаются рядом особенностей от ядерного генома. Хлоропластные геномы цветковых растений, как правило, консервативны в размерах и организации, в то время как структура митохондриальных геномов, наоборот, может сильно отличаться даже у близких видов. С другой стороны, следует отметить, что уровень нуклеотидных замен в хлоропластных генах в несколько раз выше, чем в митохондриальных (Drouin et al., 2008; Hoekstra et al., 2017).

ГЛАВА 2. Материалы и методы исследования

2.1. Объекты исследования

Объектом исследования служили образцы 5 однолетних и 16 многолетних видов подсолнечника (табл. 2.1) из Мировой коллекции ВИР. В качестве материала использовали листья подсолнечника, отобранные на Кубанской опытной станции Всероссийского института генетических ресурсов растений им. Н.И. Вавилова.

Таблица 2.1. Список исследованных образцов однолетних и многолетних видов подсолнечника.

Вид	Номер интродукции ВИР						
Однолетние виды	рода <i>Helianthus</i> L.						
H. annuus L.	398937						
H. argophyllus Torr. & Gray	1000						
H. debilis Nutt.	545666						
H. petiolaris Nutt.	503232						
H. praecox Engelm. & Gray	560400						
Многолетние видь	прода <i>Helianthus</i> L.						
H. californicus DC.	441063						
H. ciliaris DC.	-						
H. decapetalus L.	440439						
H. divaricatus L.	545674						
H. giganteus L.	441029						
H. grosseserratus M. Martens	545711						
H. hirsutus Raf.	560389						
H. laevigatus Torr. & Gray	-						
H. maximiliani Schrad.	440553						
H. mollis Lam.	530453						
H. occidentalis Riddell	441062						

H. rigidus Nutt.	545660
H. simulans Watson	545659
H. smithii Heiser	-
H. strumosus L.	440679
H. tuberosus L.	441026

Объектом исследования также служили инбредная линия 3629 культурного и линии 398941 дикорастущего подсолнечника *Helianthus annuus* L. из коллекции ЮФУ, линия НА89 и ее ЦМС аналоги НА89(РЕТ1), НА89(РЕТ2), НА89(ANN2), НА89(MAX1) из коллекции ВИР. ЦМС линии были получены на основе однолетних *H. petiolaris* (РЕТ1, РЕТ2), *H. annuus* (ANN2) и многолетнего *H. maximillianii* (MAX1) видов рода *Helianthus* L (Leclercq, 1969; Serieys, 1996, Whelan, 1978; Whelan, 1980).

2.2. Выделение хлоропластов и митохондрий из листьев подсолнечника

Хлоропласты и митохондрии выделяли из первой пары настоящих листьев 14 дневных проростков подсолнечника (Helianthus annuus), выращенных в камере для роста растений KBWF720 (Binder, Германия) при температуре 26°C, 70 % влажности воздуха и 14 часовом суточном освещении. Все процедуры выделения клеточных органелл проводили при температуре 4-8°С. Листовую ткань (5 г) гомогенизировали в ступке в 25 мл STE буфера. Состав STE буфера: 50 мМ Трис-HC1 7.8), (pH 0,4Μ сахароза, 5 мМ двунатриевая соль этилендиаминтетрауксусной кислоты, 0,2 % бычий сывороточный альбумин и 0,2 % 2-меркаптоэтанол. Гомогенат фильтровали через один слой марли, двойной слой мираклоса (Calbiochem Behring, США) и центрифугировали в центрифуге с охлаждением Avanti J-30I (Beckman Coulter, США) по следующей схеме:

- 1. 5 минут при 200 g. Отбор супернатанта.
- 2. 5 минут при 1000 g. Отбор супернатанта.
3. 5 минут при 4000 g. Осадок промывали STE буфером, еще раз центрифугировали при тех же условиях и затем использовали для дальнейшего выделения хлоропластной ДНК. Супернатант использовали для еще одного центрифугирования.

4. 10 минут при 8000 g. Надосадочную жидкость аккуратно отбирали пипеткой, а осадок, содержащий как хлоропласты, так и митохондрии, использовали для дальнейшего выделения ДНК.

2.3. Молекулярно-генетические исследования 2.3.1. Выделение ДНК

Выделение ДНК из фракций органелл или гомогената листьев подсолнечника проводили с использованием коммерческого набора для выделения ДНК из растительных тканей «Сорб-ГМО-Б» (Синтол, Россия). Процедура выделения ДНК включала в себя следующие этапы.

1. К 50 мг образца добавляли 800 мкл лизирующего буфера и 10 мкл протеиназы К (2 мг/мл). Раствор перемешивали путем пипетирования.

2. Затем раствор инкубировали в термошейкере TS-100 (Biosan, Латвия) в течение 30 минут при температуре +60°С и режиме 1000 оборотов/минуту. Далее смесь центрифугировали 5 минут при 10000 g, и супернатант переносили в новые пробирки объемом 1,5 мл.

3. В каждую пробирку вносили по 500 мкл хлороформа. Смесь интенсивно перемешивали на вортексе в течение 15 секунд, а затем центрифугировали 10 минут при 10000 g.

4. Верхнюю водную фазу объемом 300 мкл аккуратно, не захватывая нижний слой хлороформа, переносили в новые пробирки объемом 1,5 мл, в которые предварительно вносили по 600 мкл осаждающего раствора и 25 мкл сорбента.

5. Пробирки интенсивно перемешивали на вортексе до полного ресуспензирования сорбента и смесь инкубировали при комнатной температуре в

течение 10 минут в ротаторе Multi Bio RS-24 (Biosan, Латвия) со скоростью вращения 50 оборотов/минуту. Суспензию осаждали при 8000 g 10 минут. Супернатант аккуратно декантировали.

6. К осадку добавляли 500 мкл промывающего раствора №1. Перемешивали смесь до полного ресуспензирования осадка. Центрифугировали суспензию 1 минуту при 8000 g. Не задевая осадок, удаляли супернатант.

7. К осадку добавляли 500 мкл промывающего раствора №2. Перемешивали смесь до полного ресуспензирования осадка. Центрифугировали суспензию 1 минуту при 8000 доборотов/мин. Не задевая осадок, удаляли супернатант.

8. К осадку добавляли 500 мкл промывающего раствора №3. Перемешивали смесь до полного ресуспензирования осадка. Центрифугировали суспензию 1 минуту при 8000 доборотов/мин. Не задевая осадок, удаляли супернатант.

9. Пробирки помешали в термостат при температуре +65°С, на 3-5 минуты до визуального высыхания осадка. Затем к осадку добавляли 100 мкл элюирующего раствора. Перемешивали смесь до полного ресуспензирования осадка. Затем смесь инкубировали при температуре +65°С в течение 5 минут, периодически встряхивая пробирки на вортексе. Проводили центрифугирование при 10000 g в течение 2 минут. Аккуратно отбирали супернатант объемом 75 мкл и переносили в чистые пробирки.

2.3.2. Измерение концентрации ДНК

Концентрацию выделенной ДНК измеряли с использованием флуориметра QuantiFluor ST (Promega, США) и набора реактивов QuantiFluor dsDNA System (Promega, США) согласно рекомендациям производителя. С этой целью в пробирки объемом 0,5 мл вносили по 98,5 мкл ТЕ буфера, 0,5 мкл красителя и 1 мкл выделенной ДНК. Для калибровки использовали контрольный образец без добавления ДНК и стандарт с концентрацией ДНК 100 нг/мкл. Все измерения

проводили в трех повторностях и в дальнейшем использовали средние значения концентраций.

2.3.3. Секвенирование фрагментов ДНК методом Сэнгера

Для получения ампликонов и их дальнейшего секвенирования нами с помощью программы Primer BLAST (https://www.ncbi.nlm.nih.gov/tools/primerblast) были разработаны праймеры комплементарные участкам хлоропластных генов - atpB (GeneID 4055708), matK (GeneID 4055637), rbcL (GeneID 4055709) и митохондриальных генов - atp1 (GeneID 18250974), matR (GeneID 18250976), nad5 (GeneID 18250966) подсолнечника.

Таблица 2.2. Праймеры, используемые для секвенирования хлоропластных и митохондриальных генов

Ген	Последовательность прямого праймера (5'-3')	Последовательность обратного праймера (5'-3')	Размер ПЦР продукта, п.н.								
	Хлоропластные гены										
atpB	AGGTTGATAACCCACAGCGG	AAAGAACCTGGGGCGTATCG	850								
matK	AGCCAACGATCCAACCAGAG	TGGAGAAATTCCAAAGGCTAGA	1115								
rbcL	GATTTGCGAATCCCGACTGC	GGGTGCCCTAAAGTTCCTCC	821								
	Митохс	ондриальные гены									
atp1	TCTTTCGTTAGTTAAGCCACCT	CAGAAACGCTCAACTGTGGC	849								
matR	ATGGCTTTTTAAGGGGGGCCA	TCCAGACACATCGCACTTCC	832								
nad5	ATCGTAAGATGTCTCGCCCG	TAGCTCCTGGGATTTCGGGT	834								

ПЦР проводили с помощью набора реактивов Tersus Plus PCR kit (Евроген, Росиия) в термоциклере C1000 (Bio-Rad, CША) по следующей программе: начальная денатурация при 94°C в течение 3 минут, затем 28 циклов, включающих денатурацию при 95°C – 10 секунд, отжиг при 62°C – 30 секунд, элонгация при 72°C – 60 секунд и один цикл финальной элонгации при 72°C – 5 минут. ПЦР продукты очищали с помощью набора спин-колонок Cleanup Mini

(Евроген, Россия) и анализировали методом электрофоретического разделения в 1 % агарозном геле. Затем с использованием набора флуоресцентно меченных дидезоксинуклеотидов BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, США) определяли нуклеотидные последовательности ампликонов на генетическом анализаторе ABIPrism 3130xl (Applied Biosystems, США). Полученные нуклеотидные последовательности анализировали с помощью программы BioEdit v. 7.0.5 (http://www.mbio.ncsu.edu/BioEdit/bioedit.html).

2.3.4. Анализ полиморфизма митохондриальных SSR локусов

Для каждого образца проводили 2 ПЦР реакции, при этом в каждой использовали пять пар праймеров для пяти SSR локусов, в результате чего получали 10 ампликонов. Праймеры были подобраны (табл. 2.3) на основе референсного митохондриального генома *H. annuus*, полученного из базы данных NCBI (NC_023337.1). Все используемые праймеры были мечены флуоресцентной меткой FAM для дальнейшего анализа размеров ПЦР продуктов. Проверку праймеров на наличие гетеро димеров проводили с использованием OligoAnalyzer 3.1 (https://eu.idtdna.com/calc/analyzer).

Таблица 2.3. Праймеры, используемые для анализа полиморфизма митохондриальных SSR локусов

SSR локус	Тип повтора	Последовательность прямого праймера (5'-3')	Последовательность обратного праймера (5'-3')
MT11	(A) _n	CGAACGAGATAAGGTTGTCAAATG	GGAAGAATGGATCCGAACGAA
MT4	(T)n	GGACGCGAGAACCTAAGAAA	GAGCGCTCCTGCACTATAC
MT1	(A) _n	GCTCATCACCAGGTCCAAT AG	GTTCGGGACGGCTGTATTT
MT5	(A) _n	CCTTCTGAGCCAGGATCAAT AC	CGAGATCAATTCAAAGAGGACTAGA
MT13	(C) _n	GGAGGCTTCACATACTCTTACT AC	TGTATGCCTGTTGGGTCTTT
MT14	(T) _n	GGACAGGAGAGACCCTCTTTA	GGATTGAGACTACGACTGGAATG
MT22	(T) _n	AAGATGCGAATCGGGAAGG	TCGGGTTACAGTCAACTCATAAA
MT23	(G) _n	CTCGTAGCTCCCGTTTGATAC	TGTCCTTGATGACCAACCATAA

MT20	(A) _n	CTTGTTCCGTGCTATTGAGAGA	AATCGTAGGTCCCCTCGTC
MT15	(C) _n	AGTGGGAAGTAATGAGGCTAGT	CTGTCCTCGAAGGTCTCTC

ПЦР проводили с помощью набора реактивов iQ Multiplex Powermix (Віо-Rad, США). Реакционная смесь включала 12,5 мкл ПЦР-микса, 3 мкл ДНК (концентрацией 5 нг/мкл), 3 мкл праймеров (концентрацией 5 мкМ) и 6,5 мкл деионизированной воды. Реакцию амплификации проводили в термоциклере C1000 (Віо-Rad, США) по следующей программе: начальная денатурация при 95 °C в течение 3 мин., затем 27 циклов, включающих денатурацию при 95 °C – 15 сек., отжиг при 60°C – 25 сек. и элонгацию при 72 °C – 40 сек, и один цикл финальной элонгации при 72°C – 10 мин.

Размер продуктов амплификации анализировали методом капиллярного электрофореза на генетическом анализатора ABI PRISM 3130xl (Applied Biosystems, CША) и программы Peak Scanner v1.0. Размер ПЦР продукта каждого SSR локуса учитывали в качестве аллельного варианта локуса. Для оценки информативности SSR локусов использовали величину информационного полиморфизма (Polymorphism Information Content (PIC)). Индекс PIC рассчитывали по формуле: PIC=1 – ΣРі2, где Рі - частота каждой аллели локуса (Чесноков, Артемьева, 2015). На основе выявленных аллельных вариантов определяли митотипы образцов. Для оценки внутри и межвидовой изменчивости митохондриальной ДНК использовали программу Treecon 1.3b.

2.3.5. Подготовка библиотек для высокопроизводительного секвенирования

Для подготовки библиотек использовали пулированую ДНК из 5 растений каждой исследуемого образца и набор реактивов Nextera XT DNA Library Prep Kit (Illumina, США). Процедура приготовления библиотек включала следующие этапы.

1) Тагментация ДНК. В микропробирки объемом 0,2 мл вносили по 5 мкл ДНК в концентрации 0,5 нг/мкл. Затем добавляли 10 мкл буфера (Tagment

DNA Buffer) и 5 мкл фермента (Amplicon Tagment Mix). Смесь перемешивали пипетированием, кратко центрифугировали и инкубировали 5 минут при температуре +55°C. Сразу после инкубации вносили нейтрализующий буфер (Neutralize Tagment Buffer) и перемешивали содержимое пипетированием.

2) Амплификация библиотек. К раствору тагментированной ДНК добавляли по 5 мкл праймера с индексом 1 (N70X) и 5 мкл праймера с индексом 2 (S5XX). Каждая библиотека имела свою уникальную комбинацию индексов 1 и 2 для дальнейшего баркодинга ридов. После внесения праймеров в раствор добавляли ПЦР-микс (Nextera PCR Master Mix). Содержимое пробирок перемешивали пипетированием, кратко центрифугировали и проводили ПЦР в термоциклере C1000 (Bio-Rad, CША) по следующей программе: начальная денатурация при 72°C в течение 3 минут и 30 секунд при 95°C, затем 12 циклов, включающих денатурацию при 95°C – 10 секунд, отжиг при 55°C – 30 секунд, элонгация при 72°C – 30 секунд и один цикл финальной элонгации при 72°C – 5 минут.

3) Очистка библиотек. Очистку библиотек от побочных продуктов амплификации, таких как димеры адаптеров проводили с использованием магнитных частиц AMPure XP (Beckman Coulter, CША). К полученным ранее 50 мкл ПЦР смеси добавляли 30 мкл частиц AMPure XP. Содержимое перемешивали на шейкере в течение 2 минут при 1800 оборотах/мин. Затем инкубировали 5 минут при комнатной температуре (+25°С) и помещали пробирки в магнитный штатив на 2 минуты. Пипеткой удаляли жидкость из каждой пробирки и добавляли 200 мкл 80 % этанола. Инкубировали 30 секунд и удаляли жидкость из каждой пробирки. Снова добавляли 200 мкл 80 % этанола, инкубировали 30 секунд и полностью удаляли жидкость. Содержимое пробирок сушили при комнатной температуре в течение 15 минут. Пробирки вынимали из магнитного штатива и добавляли в них по 52,5 мкл элюирующего буфера (Resuspension Buffer) с последующим перемешиванием содержимого путем пипетирования. Инкубировали 2 минуты при комнатной температуре и затем переносили на 2

минуты в магнитный штатив. Осторожно, не задевая магнитные частицы, переносили 50 мкл раствора в новые пробирки.

4) Качественный контроль и нормализация библиотек. Качество полученных библиотек (наличие димеров адаптеров, размер библиотек) проверяли с использованием высокоточного капиллярного электрофореза на приборе Bioanalyzer 2100 (Agilent, США). Пример такого анализа приведен на рисунке 2.1. Качественный анализ показал, что в приготовленных нами библиотеках содержание димеров адаптеров незначительно или полностью отсутствуют. Средний размер библиотек был в пределах 400-1000 п.н. Количественный анализ библиотек приводили с помощью флуориметра QuantiFluor ST и количественного ПЦР в режиме реального времени с помощью прибора Rotor-Gene 6000 (Corbett Research, Австралия). Проводили нормализацию всех библиотек до концентрации 8 рМ.

Рисунок 2.1. Результат качественного анализа библиотеки НА89(РЕТ2), полученного на приборе Bioanalyzer 2100. По оси абсцисс размер фрагментов ДНК в п.н. По оси ординат относительные единицы флуоресценции,

отображающие количественное содержание ДНК.

2.3.6. Высокопроизводительное секвенирование

Приготовленные библиотеки секвенировали на трех платформах фирмы Illumina (США): MiSeq, NextSeq 500 и HiSeq 2000 с использованием разных наборов для секвенирования – MiSeq Reagent Kit v2 500-cycles, High Output v2 kit и TruSeq SBS Kit v3-HS, соответственно.

Для каждой из библиотек были получены специфичные по числу и размеру парные короткие чтения (риды).

1) Линия 3629 - 5806412 ридов размером 100 п.н.

2) Линия 398941 - 4058566 ридов размером 100 п.н.

3) Фертильная линия НА89 - 13240056 ридов размером 150 п.н.

4) ЦМС линия HA89(PET1) - 14758068 ридов размером 150 п.н.

5) ЦМС линия HA89(MAX1) - 10174498 ридов размером 150 п.н.

ЦМС линия НА89(РЕТ2) - 4471774 и 4931318 ридов размером 125 и
250 п.н.

ЦМС линия НА89(ANN2) - 3063836 и 3305268 ридов размером 125 и
250 п.н.

2.3.7. Анализ данных высокопроизводительного секвенирования. Сборка и аннотация геномов

Качество полученных ридов оценивали с помощью программы FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Используя программу Trimmomatic (Bolger et al., 2014) проводили тримминг ридов, содержащих адаптерную последовательность или имеющих качество прочтения (Q-score) ниже 25. Выравнивание коротких чтений на референсные геномы проводили с использованием программы Bowtie 2 (Langmead, Salzberg, 2012). В качестве референсных нуклеотидных последовательностей использовали геномы органелл подсолнечника из базы данных NCBI – пластидный геном линии HA383 (NC_007977.1) и митохондриальный геном линии HA412 (NC_023337.1). Проводили выравнивание только парных, конкордантных, неперекрывающихся

ридов (опции --no-mixed, --no-discordant, --no-overlap). Поиск вариантных сайтов осуществляли с помощью набора программ samtools/bcftools (Li, 2011) с последующих валидацией полученных данных с помощью программы визуализации геномных данных IGV (Thorvaldsdottir et al., 2013). Сборку геномов de novo проводили с использованием геномного ассемблера SPAdes v 3.10.1 (Nurk et al., 2013). Для сборки контигов использовали разные значения размера k-мера (75, 85, 95, 109). Объединение контигов в скафолды проводили путем их выравнивания относительно используя программу BLAST друг друга, (https://blast.ncbi.nlm.nih.gov/BlastAlign.cgi). Аннотирование поиск И потенциальных рамок считывания осуществляли с помощью программ ORFfinder (https://www.ncbi.nlm.nih.gov/orffinder/), BLAST и MITOFY (Alverson et al., 2010). Для графического отображения геномных карт использовали программу OGDRAW (Lohse et al., 2007).

Верификацию геномных сборок проводили как биоинформатическим методом с помощью программ QUAST (Gurevich et al., 2013) и CONTIGuator (Galardini et al., 2011), так и методом ПЦР-анализа с последующим секвенированием по Сэнгеру. Также использовали картирование чтений на собранный геном с помощью программы Bowtie 2.

2.3.8. Выделение РНК

РНК выделяли из 3-4 пары листьев растений. В каждом образце исследовали по 10 растений. Выделение тотальной РНК проводили с использованием коммерческого набора Extract RNA (Евроген, Россия). Процедура выделения РНК включала в себя следующие этапы.

1. Навеску ткани массой 50 мг гомогенизировали в жидком азоте с помощью ступки и пестика.

2. Затем в каждую ступку добавляли по 1 мл лизирующего реагента и инкубировали 15 мин при комнатной температуре. Лизат переносили в пробирки объемом 1,5 мл и центрифугировали при 6°С в центрифуге с охлаждением 5417R

(Eppendorf, Германия) при 12 000 g в течение 10 минут. Супернатант объемом 500 мкл переносили в чистые пробирки.

3. В каждую из пробирок добавляли по 200 мкл хлороформа и интенс ивно перемешивали в течение 15 секунд. Затем пробирки инкубировали 5 минут при комнатной температуре, периодически встряхивая образцы. Образцы центрифугировали при 12 000 g в течение 15 минут.

4. Верхнюю водную фазу аккуратно, не захватывая нижний слой хлороформа, переносили в новые пробирки объемом 1,5 мл, в которые предварительно вносили по 1 мл изопропанола и перемешивали 15 секунд. Затем пробирки центрифугировали при 12 000 g в течение 8 минут. Удаляли супернатант.

5. К осадку добавляли 1 мл 75 % этанола, встряхивали пробирки, центрифугировали при 12 000 g в течение 8 минут. Удаляли супернатант. Осадок подсушивали в пробирке с открытой крышкой 10 минут при 25 °C.

6. Осадок растворяли в 50 мкл воды свободной от РНКаз, перемешивая пипетированием.

2.3.9. Анализ транскрипционной активности митохондриальных генов

Для анализа транскрипционной активности генов выделенную РНК, сначала обрабатывали ДНКазой I (Thermo Fisher Scientific, США). Для реакции использовали 8 мкл РНК, 1 мкл ДНКазного буфера, 1 мкл ДНКазы. Смесь инкубировали 30 минут при 37 °C. Для инактивации фермента добавляли 1 мкл 50 мМ ЭДТА и затем инкубировали 10 минут при 65 °C. Затем проводили реакции обратной транскрипции с помощью набора реактивов MMLV RT kit (Евроген, Россия). Для этого в каждую пробирку добавляли 5 мкл обработанной ДНКазой РНК, 4 мкл буфера, 2 мкл dNTP (10 мМ), 2 мкл дитиотреитол (20 мМ), 2 мкл случайных декануклеотидных праймеров и 1 мкл MMLV ревертазы. Стерильной водой свободной от РНКаз доводили конечный объем реакционной смеси до 25 мкл. В качестве отрицательного контроля обратной транскрипции для каждого

образца использовали ту же реакционную смесь, однако, с добавлением воды вместо фермента (MMLV). Смесь инкубировали 60 минут при 39 °C и затем останавливали реакцию прогреванием смеси при 75°C в течение 10 минут. Полученную в ходе реакции обратной транскрипции кДНК использовали для дальнейшего ПЦР анализа.

ПЦР В режиме реального времени проводили с использованием 2.3) разработанных праймеров (табл. нами И набора реактивов С интеркалирующим красителем EVA Green (Синтол, Россия) на приборе Rotor-Gene 6000 (Corbett Research, Австралия) по следующей программе: начальная денатурация при 95 °C в течение 3 мин., затем 35 циклов, включающих денатурацию при 95 °C − 15 сек., отжиг при 60°C − 25 сек. и элонгацию при 72 °C - 30 сек.

Таблица 2.4. Праймеры, используемые для анализа транскрипционной активности генов.

Ген	Последовательность прямого праймера (5'-3')	Последовательность обратного праймера (3'-5')	Размер ПЦР продукта
atp1	CCCATGGCACAGCCAGAATA	CAGAAACGCTCAACTGTGGC	140
atp6	AGAACTGTAACTGACAACGCA	CCTGAGTCCGAGTCTGC ATC	106
atp9	CATTGGGGCAAACGATGCAA	TGAAAAAGAAAAAGCGTGAGGAGA	233
nad6	TGGGAGGTCGGGGTATTCAA	CAAGCCTGGACCCGCTATAC	94
orf285	TCCCATCATGACCTACCCGT	GAGTTTCCGGGTCCACCAAC	101
orf228 +285	CATTGGGGCAAACGATGCAA	GAGTTTCCGGGTCCACCAAC	343
orf306	AAGAAAGGCACCTCTGGACG	TCCGGGGGGAAAGAAATCCAT	146
orf324	GAACCACCTTTCGCTAACCT	CATCGACTTGAGAATTTGCCTC	101
orf327	GGGGATCAGTACAAGACGGC	GCAAGCATTAAGCCGTCGAA	114
orf480	GGGCGATGACCCGGATAAG	GTGCAAACCCTCACGCAAG	136
orf558	CCCGAATCGCTCGGTAAGAG	TTTCACTGCTACGCCAGCTT	134
orf645	GCCTTCCACCTCTCGTTTGA	TCCGAAAGCCGGCCTAAAAT	162
orf873	GGGGAACATCGAGAGCTTGC	AATAGCAGGCGAGAACGAGG	146

orf891	CCTGGACCCGCTATACGATG	TGGAGAGTTTCCGTGTAGAAGA	147
orf933	AGCACTTTGGGCATTCCGT	ACAAGGGTTGGACCATCAGG	126
orf1197	AGTGGGCTAGGTACCACCAT	AAGCTTGACTCTATGCGCCA	140
orf1287	CGGATTCTGGGGGGTGTCTTG	TGTTACCCCCGCAAGTATCG	140
orf2565	TCAATCCATGTGTTCTCGCT	CGGAAAGAACAGGTCTCGGT	147

Эффективность ПЦР определяли путем построения калибровочной кривой с различными начальными концентрациями кДНК. Все ПЦР реакции проводили в 3-х повторностях.

ГЛАВА 3. Результаты и обсуждение

3.1. Изменчивость генов и некодирующих локусов хлоропластной и митохондриальной ДНК у однолетних и многолетних видов подсолнечника

Для определения уровня изменчивости хлДНК и мтДНК у однолетних и многолетних видов подсолнечника секвенировали ΜЫ участки трех хлоропластных – atpB, rbcL, matK (рис. 3.1) и трех митохондриальных – atp1, nad5, matR генов (рис. 3.2) у образцов 5 однолетних (H. annuus, Hargophyllus, H. debilis, H. petiolatis, H. praecox) и 16 многолетних (H. californicus, H. ciliaris, H. decapetalus, H. divaricatus, H. giganteus, H. grosseserratus, H. hirsutus, H. laevigatus, H. maximiliani, H. mollis, H. occidentalis, H. rigidus, H. simulans, H. smithii, H. strumosus, H. tuberosus) видов. Выбор данных цитогенов был сделан не случайно. Согласно многочисленным данным литературы (Qiu et al., 2006; Mower et al., 2007; Матвеева и др., 2011; Patwardhan et al., 2014) эти гены - *atpB*, *rbcL*, *matK*, *atp1*, *nad5* и *matR* представляют собой высокоинформативные мишени в хлДНК и мтДНК для проведения молекулярного штрих-кодирования и филогенетического анализа цветковых растений.

Рисунок 3.1. Схематическое изображение секвенированных участков (заштрихованная область) хлоропластных генов *atpB*, *matK*, *rbcL* и позиции локализованных в них точковых мутаций.

Рисунок 3.2. Схематическое изображение секвенированных участков (заштрихованная область) митохондриальных генов *atp1, matR, nad5* и позиции локализованных в них точковых мутаций.

В результате анализа полученных нуклеотидных последовательностей хлоропластных генов у представителей 5 однолетних и 16 многолетних видов подсолнечника было выявлено, что ген *atpB* у представителей рода *Helianthus* обладает крайне низкой изменчивостью. За исключением *H. strumosus*, у которого был локализован только один SNP в 837 позиции гена *atpB*, приводящий к замене цитозина на аденин и не изменяющий аминокислотную последовательность CF1 β -субъединицы АТФ-синтазы у других исследованных образцов данный участок гена был идентичен. Более информативной мишенью в хлДНК оказался ген *matK*. Обнаруженный SNP в 584 позиции четко кластеризовал исследуемые образцы на однолетние и многолетние виды. Данная мутация привела к замене тимина на цитозин у представителей многолетних видов подсолнечника, тем самым изменив 195 аминокислоту матуразы К с фениаланина на серин. Наиболее информативным участком в хлДНК оказался ген *rbcL* (табл. 3.1).

Таблица 3.1 Полиморфные сайты в гене *rbcL* у образцов 5 однолетних и 16 многолетних видов рода *Helianthus L*.

Вид		Позиция в гене <i>rbcL</i>											
		618	739	740	771	841	844	982	1123	1125			
(bI	H. annuus	G	Т	G	Т	Т	С	Т	С	G			
е вид	H argophyllus	G	Т	G	Т	Т	С	Т	С	G			
лни	H. debilis	G	Т	G	Т	Т	С	Т	C	G			
өпон	H. petiolatis	G	Т	G	Т	Т	С	Т	C	G			
Одл	H. praecox	G	Т	G	Т	Т	С	Т	C	G			
	H. californicus	G	А	А	С	G	А	G	A	А			
	H. ciliaris	Α	А	А	С	G	А	G	A	А			
	H. decapetalus	G	А	А	С	G	А	G	A	А			
	H. divaricatus	G	А	Α	С	G	А	G	A	А			
	H. giganteus	G	А	Α	С	G	А	G	A	А			
1	H. grosseseratus	G	А	А	С	G	А	G	A	А			
видн	H. hirsutus	G	А	Α	С	G	А	G	A	А			
ние	H. laevigatus	G	А	А	С	G	А	G	A	А			
олет	H. maximiliani	G	А	А	С	G	А	G	A	А			
НОГ	H. mollis	G	А	А	С	G	А	G	A	А			
Σ	H. occidentalis	G	А	А	С	G	А	G	A	А			
	H. rigidus	G	А	Α	С	G	А	G	A	А			
	H. simulans	G	А	Α	С	G	А	G	A	А			
	H. smithii	G	А	A	С	G	А	G	A	A			
	H. strumosus	G	А	A	С	G	А	G	A	A			
	H. tuberosus	G	А	A	С	G	А	G	A	А			

В секвенированной последовательности гена *rbcL* у исследованных образцов было локализовано 9 полиморфных сайтов. Один SNP в 618 позиции гена *rbcL* оказался уникальным для *H. ciliaris*. Данная мутация не приводит к

изменению транслируемой последовательности. Остальные 8 SNP четко кластеризуют исследуемые образцы на однолетние и многолетние виды (табл. 3.1). Среди них только 1 замена тимина на цитозин в 771 позиции гена *rbcL* оказалась синонимичной, а остальные 7 приводят к изменению аминокислотной последовательности большой субъединицы рибулозобисфосфаткарбоксилазыоксигеназы (РБФК/О). В частности, SNP в 739 и 740 позициях гена *rbcL* приводят к замене 247-ой аминокислоты цистеина на аспаргин, SNP в 841 позиции *rbcL* – серина на аланин в 281 положении, SNP в 844 позиции *rbcL* – глутамина на лизин в 282 положении, SNP в 982 позиции *rbcL* – серина на аланин в 328 положении, SNP в 1123 и 1125 позициях *rbcL* - к замене 375-ой аминокислоты, а именно лейцина на изолейцин. Суммарно все 9 локализованных SNP в гене *rbcL* приводят к изменению только 5 аминокислот в транслируемом белке РБФК/О.

Таким образом, нами локализованы две специфичные мутации, одна в гене *atpB* у *H. strumosus* и одна в гене *rbcL* у *H. ciliaris*, а мутации в генах *matK* и *rbcL* кластеризующие представителей *Helianthus L*. на однолетние и многолетние. Следует добавить, что идентифицированные точковые мутации могут быть использованы в качестве молекулярных маркеров для баркодинга.

Анализ нуклеотидных последовательностей митохондриальных генов - atp1, nad5 и matR у образцов 5 однолетних и 16 многолетних видов подсолнечника показал, что уровень их изменчивости значительно уступает хлоропластным генам. Так, например, нуклеотидный состав гена atp1 был идентичным у всех исследуемых видов. Ген nad5 оказался также консервативным. В нем обнаружена одна трансверсия гуанина на тимин в 362 позиции только у двух многолетних видов подсолнечника - *H. californicus* и *H. maximiliani*. Данный SNP приводит к замене аргинина на изолейцин в 121 положении субъединицы НАДНдегидрогеназы. В гене matR были обнаружены два SNP, а именно замена гуанина на аденин в 271 позиции у *H. strumosus* и замена гуанин на цитозин в 284 позиции у *H. ciliaris*. При этом обе эти мутации в гене matR являются несинонимичными: в случае *H. strumosus* происходит замена глицин на аспаргиновую кислоту в 91

положении митохондриальной матуразы, а у *H. ciliaris* - глицина на аланин в 95 положении того же полипептида. Таким образом, всего в исследуемых участках митохондриальных генов *atp1*, *nad5* и *matR* у 5 однолетних и 16 многолетних видов подсолнечника обнаружены всего 3 точковые мутации.

В связи с тем, что митохондриальные гены продемонстрировали высокий уровень консерватизма у представителей рода *Helianthus L.*, мы провели анализ некодирующих последовательностей (SSR локусов) митохондриальной ДНК. Была разработана панель маркеров, позволяющая оценить уровень полиморфизма митохондриальной ДНК подсолнечника (раздел 2.3.4). Всего было использовано 10 молекулярных маркеров для идентификации аллельных вариантов 10 SSR локусов, соответственно. Информативность этих SSR маркеров зависела от числа и частоты встречаемости аллельных вариантов. Так в локусе МТ5 было выявлено 2 аллеля, в локусах МТ13, МТ14, МТ203 - 3 аллеля, в локусах МТ1, МТ11, МТ15, МТ22, МТ23 - 4 аллеля и в локусе МТ4 - 8 аллелей. Также для каждого SSR локуса был рассчитан индекс PIC - показатель, отражающий величину информационного полиморфизма. Значения PIC, а также число аллельных вариантов для каждого исследуемого SSR локуса представлены в таблице 3.2.

SSR локус	Аллельные варианты, п.н.	PIC
MT11	125, 126, 127, 128	0,6
MT4	151, 153, 155, 156, 157, 159, 160, 161	0,8
MT1	185, 189, 190, 191	0,7
MT5	222, 223	0,2
MT13	264, 265, 266	0,6
MT14	290, 291, 292	0,4
MT22	308, 310, 311, 312	0,5
MT23	330, 331, 332, 333	0,6

Таблица 3.2. Аллельные различия митохондриальных SSR локусов у подсолнечника.

53

MT20	364, 365, 368	0,6
MT15	401, 402, 403, 404	0,6

Значения РІС варьировали в зависимости от конкретного маркера в пределах 0,2–0,8. Наиболее информативным оказался маркер МТ4, РІС которого составил 0,8. Маркер МТ1 имел значение РІС равное 0,7. Для маркеров МТ11, МТ13, МТ23, МТ20, МТ15 РІС составил 0,6, для МТ22 - 0,5 и для МТ14 - 0,4. Наименее информативным оказался маркер МТ5, РІС которого составил только 0,2. Как видно из результатов расчета РІС, большая часть маркеров имеет значения выше 0,5, что свидетельствует о высокой степени их информационного полиморфизма и эффективности для SSR-анализа мтДНК различных видов подсолнечника.

На основе данных полиморфизма митохондриальных SSR локусов были определены митотипы для каждого вида подсолнечника и построена кладограмма (рис. 3.3), наглядно отражающая различия между ними.

Рисунок 3.3. Кладограмма образцов однолетних и многолетних видов подсолнечника построенная на основе SSR-анализа мтДНК. Цифрами обозначены значения бутстреп-анализа; значения бутстрепа указаны для узлов с поддержкой более 50 %.

Из представленной кладограммы видно, что почти каждый образец подсолнечника имеет уникальный митотип. Исключением являются виды *H. giganteus* и *H. grosseserratus*, у которых идентичны аллели всех 10 исследуемых SSR локусов. Также отчетливо видны различия между однолетними и многолетними видами подсолнечника. Интересно, что митотип *H. annuus* значительно отличается от митотипов других однолетних видов. Многолетние виды можно кластеризировать на три группы. Первая включает 3 вида: *H. mollis, H rigidus* и *H. occidentalis*, вторая – 2 вида: *H. ciliaris и H. laevigatus* и третья - 10

остальных видов: *H. californicus, H. decapetalus, H. divaricatus, H. giganteus, H. grosseserratus, H. hirsutus, H. maximiliani, H. simulans, H. smithii, H. strumosus, H. tuberosus.* Важно отметить, что такая кластеризация на основе митохондриальных митотипов хорошо согласуется с данными филогенетического анализа подсолнечника проведенного, как на основе нуклеотидных последовательностей ядерных генов 18S-26S pPHK (Timme et al., 2007), так и на анализе данных высокопроизводительного секвенирования 172 генов ядерного и хлоропластного происхождения (Stephens et al., 2015).

Таким образом, уровень изменчивости некодирующих последовательностей митохондриальной ДНК (SSR локусов) у подсолнечника выше, чем уровень изменчивости митохондриальных генов, и позволяет достоверно кластеризовать однолетние и многолетние виды подсолнечника.

В целом уровень изменчивости митохондриальных генов у представителей рода *Helianthus* значительно ниже, чем хлоропластных. Гены, кодирующие субъединицы $AT\Phi$ -синтазы оказались наиболее консервативными как в хлоропластной (*atpB* – 1 SNP), так и митохондриальной ДНК (*atp1* нет изменчивости). В хлоропластных и митохондриальных генах выявлены видоспецифичные SNP, а именно: у вида *H. strumosus* в генах *rbcL* (хлДНК) и *matR* (мтДНК), у вида *H. ciliaris* в генах *atpB* (хлДНК) и *matR* (мтДНК), у вида *H. ciliaris* в генах *atpB* (хлДНК) и *matR* (мтДНК). SNP в хлоропластных генов *matK* и *rbcL* позволяют различать однолетние и многолетние виды подсолнечника. В случае митохондриальные генов, таких мутаций не обнаружено, однако кластеризация видов возможна на основе данных о некодирующих последовательностях (SSR локусов) митохондриальной ДНК.

3.2. Сравнительный анализ хлоропластного и митохондриального геномов у культурного и дикорастущего подсолнечника (*Helianthus annuus* L.)

С целью определения спектра и уровня внутривидовой изменчивости внеядерных геномов *Helianthus annuus* L. мы провели полногеномное секвенирование хлоропластной и митохондриальной ДНК у линий НА89 и 3629 культурного и линии 398941 дикорастущего подсолнечника.

В качестве примера на рисунке 3.4 представлен результат сборки и аннотации хлоропластного генома линии НА89. Для повышения информативности результатов в сравнительный анализ хлоропластных геномов мы включили дополнительно данные из базы NCBI полных нуклеотидных последовательностей хлДНК еще двух линий культурного подсолнечника - HA383 (GenBank ID NC 007977.1) и SF193 (GenBank ID CM007907.1).

В результате сравнительного анализа хлоропластной ДНК 4-х линий культурного подсолнечника НА89, 3629, НА383, SF193 и линии 398941 дикорастущего подсолнечника всего было выявлено 62 вариантных сайта. Из них 29 были представлены мононуклеотидными повторами в микросателлитных локусах, т.е. в не кодирующих областях хлДНК (табл. 3.3). Наиболее распространённым оказался микросателлитный повтор (T)_n (51,7 %), далее следует - (A)_n (41,4 %) и наиболее редкий - (C)_n (6,9 %). Изменчивость в мононуклеотидных повторах SSR локусов (G)_n не обнаружена.

Рисунок 3.4. Генетическая карта хлоропластного генома линии НА89 подсолнечника. Внутреннее кольцо отражает содержание GC-оснований (темносерая область) и AT-оснований (светло-серая область). LSC – большой однокопийный район, SSC – малый однокопийный район, IR – инвертированные повторы. На внешнем кольце жирными линиями обозначены инвертированные повторы IRa и IRb. Стрелками обозначены направления транскрипции генов. В структуре исследуемых хлоропластных геномов также было локализовано 23 SNP и 10 INDEL (делеций и инсерций). Большая часть (60,9 %) точечных мутаций представлена транзициями, а именно: 8 замен А/G (34,8 %) и 6 замен С/Т (26,1 %). На долю трансверсий приходиться 9 мутаций (39,1 %), в том числе А/С – 5 (21,7 %), G/T – 2 (8,7 %) и А/Т – 2 (8,7 %). Трансверсии типа С/G не обнаружены.

Среди 23 выявленных SNP 14 были локализованы в не кодирующих областях хлДНК (межгенные регионы и интроны генов), а оставшиеся 9 имели внутри генную локализацию. При этом 6 SNP представлены несинонимичными мутациями, а 3 SNP приводят к замене аминокислот в белках, кодируемыми генами *rpoC2*, *rps2*, *ndhF* (табл. 3.3).

Таблица 3.3. Полиморфные сайты хлоропластной ДНК, локализованные у 4х линий НАЗ83, SF191 НА89, 3629 культурной формы и линии 398941 дикорастущей формы подсолнечника.

Позиции	Тип			Линии			
ого генома НА383	полимо рфизма	HA383	SF191	HA89	3629	ДФ* 398941	Локализация
206	SSR	(A)11	(A)11	(A)11	(A)11	(A) ₁₂	МГР <i>rpl2-psbA</i>
1991	SSR	(T)9	(T)9	(T)9	(T)9	(T)10	МГР psbA-matK
2032	SSR	(T) ₁₂	(T) ₁₂	(T) ₁₂	(T) ₁₂	(T)13	МГР psbA-matK
5450	SSR	(C) ₁₁	(C)9	(C)9	(C)9	(C) ₈	<i>rps16</i> (интрон)
5653	SNP	А	А	А	А	С	<i>rps16</i> (интрон)
5692	SSR	(T) ₁₃	(T) ₁₃	(T) ₁₃	(T) ₁₃	(T)11	<i>rps16</i> (интрон)
9883	SSR	(A)8	(A)8	(A)8	(A)8	(A)9	MГР psbI-petN
12984	SSR	(T)15	(T)15	(T)15	(T)15	(T)11	МГР <i>psbM-rpoB</i>
16887	SNP	С	С	С	С	А	<i>rpoC1</i> (интрон)
17424	INDEL	G	G	G	G	-	<i>rpoC1</i> (интрон)
20660	SNP	Т	Т	Т	Т	С	<i>rpoC2</i> несинонимичная мугация Leu490Pro
24141	SNP	А	A	А	А	С	<i>rps2</i> несинонимичная мутация Gh178His

25466	SSR	(A) ₁₀	(A)10	(A) ₁₀	(A)10	(A) ₁₃	МГР atpI-atpH
28373	SSR	(T) ₁₆	(T)15	(T)15	(T)15	(T) ₁₆	МГР <i>atpF-atpA</i>
29701	SNP	G	G	G	G	А	<i>atpA</i> синонимичная мутация
30166	SSR	(A) ₁₀	(A)10	(A) ₁₀	(A)10	(A) ₁₂	МГР <i>atpA-psbD</i>
35398	SSR	(A) ₁₈	(A)17	(A) ₁₈	(A) ₁₈	(A) ₁₈	МГР <i>psbC-psbZ</i>
35885	SSR	(A)9	(A)9	(A)9	(A)9	(A) ₈	MΓP psbZ-rps14
39980	SNP	G	G	G	G	А	<i>psaA</i> синонимичная мутация
41995	SSR	(T)9	(T)9	(T)9	(T)9	(T)10	МГР psaA-ycf3
42006	SSR	(A)29	(A) ₂₈	(A)29	(A)29	(A)29	МГР psaA-ycf3
46980	SNP	А	А	А	А	G	MΓP rps14-ndhJ
47912	SNP	G	Т	Т	Т	Т	MГР rps14-ndhJ
50032-41	INDEL	ATCTA CATAG	ATCT ACAT AG	ATCT ACAT AG	ATCT ACAT AG	_	MГР ndhC-atpE
50163	SSR	(T) ₁₀	(T) ₁₀	(T) ₁₀	(T) ₁₀	(T) ₁₂	МГР ndhC-atpE
50764	SSR	(T)11	(T) ₁₁	(T) ₁₁	(T)11	(T)8	МГР ndhC-atpE
51778	SSR	(T) ₁₀	(T) ₁₀	(T) ₁₀	(T) ₁₀	(T)9	МГР ndhC-atpE
54283	SNP	Т	C	C	C	С	МГР atpB-rbcL
54286	SNP	А	А	А	А	Т	МГР atpB-rbcL
54312-13	INDEL	CA	CGA	CGA	CGA	CGA	МГР atpB-rbcL
54313	SSR	(A)16	(A)15	(A)15	(A)15	(A)17	МГР atpB-rbcL
58654	SNP	А	А	А	А	G	МГР accD-psal
60017	SSR	(C) ₆	(C) ₆	(C) ₆	(C) ₆	(C)7	МГР ycf4-cemA
62683	SSR	(T) ₂₂	(T) ₂₂	(T) ₂₂	(T) ₂₂	(T)15	МГР petA-psbJ
64145	SSR	(A)9	(A)9	(A)9	(A)9	(A) ₈	MГP psbE-petL
64668	SNP	С	С	С	С	Т	MΓP psbE-petL
65713	SSR	(T) ₁₆	(T) ₁₆	(T) ₁₆	(T)15	(T) ₁₆	МГР petG-psaJ
70584	SSR	(T)9	(T)9	(T)9	(T)9	(T)10	<i>clpP</i> (интрон)
73600-601	INDEL	AA	AA	AA	AA	-	МГР <i>psbT-psbN</i>
74157	SNP	Т	Т	Т	Т	А	MFP psbH-petB
76370	SNP	Α	Α	А	Α	С	<i>petD</i> (интрон)

79932	SSR	(T) ₂₂	(T) ₂₂	(T) ₂₂	(T) ₂₂	(T)15	MГР rps8-rpl14
80456	SSR	(T) ₂₄	(T) ₂₃	(T) ₂₄	(T) ₂₄	(T) ₂₄	MГP rpl14-rpl16
80718	SNP	G	G	G	G	А	<i>rpl16</i> синонимичная мутация
81057	SNP	G	G	G	G	А	MГР rpl16-rps3
81555	SNP	А	А	А	А	G	MГР rpl16-rps3
102705	INDEL	G	-	-	-	-	MГР rrn16-rrn23
105130	INDEL	G	-	-	-	-	rrn23
106156	INDEL	С	-	-	-	-	MΓP rrn4.5-rrn5
106393	SSR	(A)33	(A) ₃₁	(A)33	(A)33	(A)33	MГР rrn5-ycf1
108541	SNP	С	С	C	С	А	<i>ycf1</i> синонимичная мугация
108697	SNP	G	G	G	G	А	<i>ycf1</i> синонимичная мутация
115821	SSR	(A) ₂₇	(A) ₂₈	(A) ₂₇	(A) ₂₇	(A)27	<i>ndhA</i> (интрон)
117833	SNP	С	C	C	C	Т	ndhG синонимичная мутация
118438	SNP	G	G	G	G	Т	MΓP ndhG-ndhE
120979	SSR	(A)16	(A)16	(A) ₁₆	(A)16	(A) ₁₃	МГР ndhD-ccsA
122970	SSR	(T) ₁₃	(T) ₁₃	(T) ₁₃	(T) ₁₃	(T) ₁₂	МГР ccsA-rpl32
123004	SNP	Т	Т	Т	Т	С	МГР ccsA-rpl32
125593	SNP	Т	Т	Т	C	С	<i>ndhF</i> несинонимичная мутация Leu475Ser
128472	INDEL	G	-	-	-	-	MΓP rrn5-rrn4.5
129498	INDEL	C	-	-	-	-	rrn23
131923	INDEL	С	-	-	-	-	MГР rrn23-rrn16

*ДФ – дикий тип.

**МГР – межгенный регион.

Четыре анализируемые линии культурного подсолнечника различаются между собой по 19 сайтам в хлДНК, а именно 9 SSR, 3 SNP и 7 INDEL. При этом наибольшая изменчивость хлДНК (3 SSR, 2 SNP, 7 INDEL) характерна для линии HA383. В свою очередь хлДНК линий HA89 и SF191 различаются по 5 SSR локусам, а линии 3629 и HA89 только по 2 сайтам – 1 SSR и 1 SNP.

Большая часть полиморфных сайтов хлДНК была обнаружена при сравнении культурной и дикорастущей форм подсолнечника. Так, например, хлоропластный геном линии 398941 дикорастущей формы отличается от референсного генома линии HA383 культурной формы 23 SSR, 21 SNP и 10 INDEL, то есть суммарно по 54 из 62 выявленных вариантных сайтов.

Особый интерес для оценки изменчивости ДНК представляют точечные мутации и их локализация в геноме (Yang et al., 2010; Doorduin et al., 2011). Около половины SNP (9 из 21), обнаруженных в хлДНК дикорастущего подсолнечника, локализованы в кодирующих областях генома. В том числе 3 мутации приводят к изменению аминокислотного состава хлоропластных белков, а именно: замена лейцина на пролин в 490 положении β " субъединицы ДНК зависимой РНК полимеразы (ген *rpoC2*), замена глутамина на гистидин в 178 положении рибосомального белка S2 (ген *rps2*) и замена лейцина на серин в 475 положении F субъединицы НАДН-дегидрогеназы (ген *ndhF*). Известно, что кодирующие области хлДНК подсолнечника составляют около 77,6 т.п.н., что примерно составляет половину хлоропластного генома. У линии 398941 дикорастущей формы 9 SNP локализованы в генах, что в среднем составляет 0.11 SNP на 1 т.п.н кодирующей части хлоропластного генома. В случае 4-х линий культурной формы этот показатель существенно ниже - 0.013 мутаций на 1 т.п.н.

Следующим этапом нашего исследования является оценка внутривидовой изменчивости митохондриального генома *Helianthus annuus* L. На рисунке 3.5 представлен результат сборки и аннотации митохондриального генома линии НА89. Для повышения информативности результатов в сравнительный анализ митохондриальных геномов мы включили дополнительно данные из базы NCBI полных нуклеотидных последовательностей мтДНК еще двух линий культурного подсолнечника - HA412 (GenBank ID NC_023337.1) и SF193 (GenBank ID CM007908.1).

Рисунок 3.5. Генетическая карта митохондриального генома линии НА89 подсолнечника. Стрелками обозначены направления транскрипции генов мтДНК. Во внутреннем кольце серым и темно серым цветом отображено соотношение АТ и GC нуклеотидных пар.

Сравнительный анализ структуры мтДНК 4-х линий НА89, 3629, НА412, SF193 культурного и линии 398941 дикорастущего подсолнечника позволил нам локализовать 24 вариантных сайта, в том числе 11 SSR локусов представленные как в случае и с хлДНК, исключительно мононуклеотидными повторами. Однако

нуклеотидный состав полиморфных SSR локусов мтДНК существенно отличается от SSR локусов хлДНК; а именно: $(T)_n - 36,4 \%, (A)_n - 27,3 \%, (G)_n - 27,3 \%, (C)_n - 9 \%$. Очевидно, эти различия связаны с особенностями нуклеотидного состава анализируемых геномов, т.к. А-Т нуклеотидные пары в хлДНК составляют 62,4 %, а в мтДНК – только 54,9 %. Среди полиморфных сайтов мтДНК также было выявлено 9 SNP и 4 INDEL (табл. 3.4).

Таблица 3.4. Полиморфные сайты митохондриальной ДНК, локализованные у 4-х линий НА412, SF191, НА89, 3629 культурной формы и линии 398941 дикорастущей формы подсолнечника.

Позиции	Тип			Линии			
ого генома НА412	полимо рфизма	HA412	SF191	HA89	3629	ДФ 398941	Локализация
6206	SSR	(A)8	(A)8	(A)8	(A)7	(A)7	MΓP nad2-ccmC
7404	SSR	(G) ₁₀	(G)9	(G) ₁₀	(G) ₁₀	(G) ₁₀	MΓP nad2-ccmC
35690-91	INDEL	СТ	CTT	CTT	CTT	CTT	orf777
36360	SNP	Т	Т	Т	Т	G	МГР orf777-atp8
46039	INDEL	А	А	А	А	-	MГP rpl5-nad4
49272	SSR	(C)11	(C) ₁₀	(C)11	(C)11	(C)9	МГР nad4-trnD
51678	SSR	(G) ₁₀	(G) ₁₀	(G) ₁₀	(G)9	(G)9	MГP nad4-ccmB
105474	SSR	(T)35	(T)44	(T)35	(T)35	(T)35	MГР nad1-coxI
116777	SNP	G	G	G	G	Т	MГP atp9-trnM
129368-69	INDEL	GG	GTG	GTG	GTG	GTG	rrn26
169028	SNP	G	G	G	G	Т	<i>nad</i> 6 несинонимичная мутация (Ser232Phe)
170184	SSR	(T) ₁₄	(T)15	(T)15	(T) ₁₃	(T) ₁₂	MГP nad6-ymf16
178406	SSR	(T)9	(T)9	(T)9	(T)9	(T) ₈	<i>ymf16</i> интрон
184739	SSR	(A)10	(A)10	(A)10	(A)11	(A)11	MГР ymf16-cob
188363	SSR	(T)11	(T)11	(T)11	(T) ₁₀	(T)10	сов интрон
190813	SNP	G	G	G	G	А	МГР cob-ccmFc
202672	SNP	Т	Т	Т	Т	С	MГP orf873-atp1

209335-36	INDEL	AA	AA	AA	AA	-	МГР atp1-ccmFn
211809	SNP	С	G	G	G	G	МГР atp1-ccmFn
230112	SNP	А	А	А	А	С	<i>rpl16</i> несинонимичная мутация (Lys38Thr)
248266	SSR	(A)14	(A) ₁₄	(A) ₁₄	(A)11	(A)10	MΓP rpl16-matR
269062	SNP	G	G	G	G	С	МГР trnW-atp6
284451	SSR	(G)9	(G)9	(G)9	(G)9	(G) ₁₀	МГР <i>coxII</i> интрон
293545	SNP	Т	G	Т	Т	Т	MГР coxII-nad2

Большая часть SNP (77,8 %) представлена трансвериями, а именно: G/T – 4 (44,5 %), C/G – 2 (22,2 %), A/C – 1 (11,1%). Трансверсии типа А/T не обнаружены. Среди транзиций были выявлены 1 замена А/G (11,1 %) и 1 замена С/T (11,1 %). Количественные соотношения выявленных трансверсий и транзиций в мтДНК исследуемых образцов значительно отличаются от таковых в хлДНК. Данные различия, как и в случае SSR локусов, предположительно связаны с особенностями AT/GC-состава органельных геномов. 7 однонуклеотидных замен были локализованы в межгенных регионах мтДНК, а 2 имели внутригенную локализацию. При этом оба SNP приводят к замене аминокислот в белках, кодируемых генами *nad6* и *rpl16* (табл. 3.4).

Все четыре анализируемые линии культурного подсолнечника различаются по 13 сайтам: 9 SSR, 2 SNP и 2 INDEL. При этом только линия HA89 не имеет характерных вариантных сайтов мтДНК, которые бы отличали ее от трех остальных линий. Митохондриальный геном линии HA412 отличается от геномов других линий одним SNP и двумя инделями, линии SF193 – двумя SSR и одним SNP, линии 3629 – пятью SSR. Интересно отметить, что SSR локус, расположенный в межгенном регионе *nad6-ymf16* оказался наиболее полиморфным, его поли(T)₁₅ аллельный вариант был выявлен у HA89 и SF193, у HA412 – (T)₁₄, у 3629 – (T)₁₃, а у дикорастущей формы – (T)₁₂.

Большая часть полиморфных сайтов мтДНК, как и в хпДНК была обнаружена при сравнении культурной и дикорастущей форм подсолнечника.

Например, митохондриальный геном линии 398941 дикорастущей формы отличается от референсного генома линии HA412 по 9 SSR локусам, 7 SNP и 4 INDEL, то есть суммарно по 20 из 24 выявленных вариантных сайтов. Важно отметить, что два SNP, обнаруженных в митохондриальном геноме дикорастущей формы подсолнечника, приводят к изменению аминокислотных последовательностей белков, а именно: замена серина на фенилаланин в 232 положении шестой субъединицы HAДH-дегидрогеназы (ген *nad6*) и замена лизина на треонин в 38 положении рибосомального белка L16 (ген *rpl16*).

Результаты сравнительного анализа полиморфных сайтов внеядерной ДНК 4-х линий HA412, SF191, HA89, 3629 культурной формы и линии 398941 дикорастущей формы подсолнечника суммированы в таблице 3.5. Необходимо принять во внимание, что митохондриальный геном подсолнечника включает почти в два раза больше нуклеотидов, чем хлоропластный. В связи с этим мы полиморфизма 3.5). ввели относительный показатель частоты (табл. рассчитанный как отношение числа выявленных полиморфных сайтов к общему числу нуклеотидов (выраженное в т.п.н.) генома. Например, частота SNP в хлДНК составила 0,152 SNP, а в случае мтДНК – 0,03 SNP. То есть общая частота точечных мутаций в хлоропластном геноме в 5 раз выше. При этом частота мутаций в кодирующей части хлоропластного генома (около 77,6 т.п.н.) составляет 0,116 SNP, что почти в два раза выше, чем этот показатель в экзонах митохондриальных генов (29,8 т.п.н.) – 0,068 SNP.

Таблица 3.5. Количество SSR, SNP и INDEL, выявленных в хлоропластном и митохондриальном геномах у культурных (КФ) и дикорастущей (ДФ) форм *H. annuus* L.

Тип	Хлоропластный геном							Митохондриальный геном				
полиморф	КΦ		ДФ		Общее		КΦ		ДФ		Общее	
изма	Абс	Отн	Абс	Отн	Абс	Отн	Абс	Отн	Абс	Отн	Абс	Отн
Число полиморфных сайтов в геноме												
SSR	9	0,059	23	0,152	29	0,192	9	0,030	9	0,030	11	0,037
SNP	3	0,019	21	0,139	23	0,152	2	0,007	7	0,023	9	0,030
INDEL	7	0,046	10	0,066	10	0,066	2	0,007	4	0,013	4	0,013
Σ	19	0,126	54	0,357	62	0,411	13	0,043	20	0,066	24	0,080
	Число полиморфных сайтов в некодирующих областях генома											
SSR	9	0,124	23	0,318	29	0,401	9	0,033	9	0,033	11	0,041
SNP	2	0,028	12	0,166	14	0,193	2	0,007	5	0,018	7	0,026
INDEL	5	0,069	8	0,110	8	0,110	0	0	2	0,007	2	0,007
Σ	16	0,221	43	0,594	51	0,704	11	0,041	16	0,059	20	0,074
Число полиморфных сайтов в кодирующих областях генома												
SNP	1	0,013	9	0,116	9	0,116	0	0	2	0,068	2	0,068
INDEL	2	0,026	2	0,026	2	0,026	2	0,068	2	0,068	2	0,068
Σ	3	0,039	11	0,142	11	0,142	2	0,068	4	0,134	4	0,134

Таким образом, из результатов, приведенных в таблице 3.5 можно сделать вывод, что у культурного и дикорастущего подсолнечника (*H. annuus* L.) изменчивость хлоропластного генома в 5,1 раз выше, чем митохондриального и дикорастущий подсолнечник значительно отличается от селекционных линий, как по уровню изменчивости хлДНК, так и мтДНК.

3.3. Особенности структурно-функциональной организации геномов хлоропластов и митохондрий у фертильного и стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС

Целью исследования, изложенного в данной главе, был сравнительный анализ структурно-функциональной организации хлоропластных и митохондриальных геномов у фертильной линии НА 89 и ее ЦМС аналогов на основе однолетних (PET1, PET2 - *H. petiolaris*, ANN2 - *H. annuus*) и многолетнего (MAX1 - *H. maximilliani*) видов рода *Helianthus* L, с единым ядерным геномом и различными цитоплазмонами. Полногеномное секвенирование органельных ДНК позволила нам провести сборку *de novo* и аннотацию хлоропластных и митохондриальных геномов 4-х линий аналогов: HA89(PET1), HA89(PET2), HA89(ANN2) и HA89(MAX1). Хлоропластные и митохондриальные геномы ЦМС линий сравнивали с ДНК органелл фертильной линии HA89, особенности структурной организации которых были рассмотрены ранее (см раздел 3.2).

3.3.1. Изменчивость хлоропластной ДНК у фертильного и стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС

Количество нуклеотидов, входящих в состав хлоропластных геномов у фертильного и стерильных аналогов линии НА89 подсолнечника варьировало в довольно узких пределах: от 151094 п.н. (фертильный аналог НА89) до 151147 п.н. (НА89(РЕТ2)). Структура хлоропластных геномов сходна с таковой для большинства высших растений и включает большой однокопийный район (LSC), малый однокопийный район (SSC) и два инвертированных повтора (IR). Размер LSC области варьирует от 83527 п.н. (фертильный аналог НА89) до 83605 п.н. (НА89(ANN2), SSC региона - от 19113 п.н. (НА89(MAX1)) до 19147 п.н. (фертильный аналог НА89) и IR региона – от 24210 п.н. (фертильный аналог НА89, НА89(РЕТ1)) до 24212 п.н. (НА89(РЕТ2), НА89(ANN2), НА89(МАХ1)) (табл. 3.6). Содержание GC-оснований в исследуемых хлДНК аллоплазматических линий, имеет незначительные вариации от 37,60 до 37,62 % (табл. 3.6), что сравнимо с хлДНК других видов *Angiosperms* (Bock, 2007).

Таблица 3.6. Первичная структура хлДНК у фертильного и стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС.

Линия	Размер хлДНК, п.н.	LSC , п.н.	SSC, п.н.	IR (2x), п.н.	GC-состав, %
Фертильная линия НА89	151094	83527	19147	24210x2	37,62
HA89(PET1)	151110	83545	19145	24210x2	37,61
HA89(PET2)	151127	83565	19138	24212x2	37,60
HA89(ANN2)	151147	83605	19118	24212x2	37,61
HA89(MAX1)	151138	83601	19113	24212x2	37,61

В результате сравнительного анализа хлоропластных геномов всего выявлено 447 полиморфных сайта: 57 ИЗ которых представлены микросателлитными локусами мононуклеотидных В виде повторов, локализованными в некодирующих областях хлДНК (табл. 3.7). Соотношение нуклеотидного состава полиморфных SSR локусов составило: А – 47,4 %, T – 45,6 %, C – 5,3 %, G – 1,7 %. Наибольшее число полиморфных SSR локусов нами выявлено при сравнении хлДНК фертильной линии НА89 с ЦМС аналогом HA89(MAX1) – 40, далее следует HA89(ANN2) - 38, HA89(PET2) – 36 и, наконец, HA89(PET1) – только 21.

•					-		
Позиция в референсном геноме	Референсный геном - НА89 (ферт.)	PET1	PET2	ANN2	MAX1	Локализация	Регион
206	(A)11	(A) ₁₂	(A)9	(A)9	(A)9	MГP rpl2-psbA	LSC
370	(A)7	(A)7	(A)7	(A)7	(A)9	МГР <i>rpl2-psbA</i>	LSC
1667	(A) ₆	(A) ₆	(A)7	(A)8	(A)9	МГР psbA-matK	LSC
1991	(T)9	(T) ₁₀	(T) ₈	(T)8	(T) ₁₃	МГР psbA-matK	LSC
2032	(T) ₁₂	(T) ₁₃	(T)9	(T) ₁₄	(T) ₁₀	МГР psbA-matK	LSC
3953	(T) ₇	(T)7	(T)7	(T)7	(T)8	MГP matk-rps16	LSC
4437	(A)7	(A)7	(A)7	(A) ₆	(A)7	MГP matk-rps16	LSC
4788	(A) ₈	(A) ₈	(A) ₈	(A) ₈	(A)9	MГP matk-rps16	LSC
5450	(C)9	(C) ₈	(C) ₁₀	(C)9	(C)9	<i>rps16</i> интрон	LSC
5692	(T) ₁₃	(T) ₁₁	(T)7	(T)7	(T)7	<i>rps16</i> интрон	LSC
5718	(C) ₇	(C)7	(C) ₇	(C)11	(C) ₈	<i>rps16</i> интрон	LSC
7720	(A) ₈	(A) ₈	(A) ₈	(A)8	(A)9	МГР rps16-psbK	LSC
7944	(T) ₈	(T) ₈	(T)11	(T)9	(T) ₈	MГP <i>psbK-psbI</i>	LSC
8294	(T) ₈	(T) ₈	(T)8	(T) ₁₀	(T)9	MГP <i>psbK-psbI</i>	LSC
8552	(A) ₈	(A) ₈	(A)7	(A)7	(A)7	MГР <i>psbI-petN</i>	LSC
8880	(T) ₆	(T) ₆	(T) ₆	(T) ₆	(T)7	MГР <i>psbI-petN</i>	LSC
9882	(A) ₈	(A)9	(A)9	(A)9	(A)10	MГР <i>psbI-petN</i>	LSC
12759	(A)9	(A)9	(A)9	(A)9	(A)10	МГР <i>psbM-rpoB</i>	LSC
12984	(T)15	(T) ₁₁	(T)9	(T) ₁₀	(T) ₁₄	МГР <i>psbM-rpoB</i>	LSC
16964	(A) ₈	(A)8	(A)9	(A)9	(A)8	<i>гроС1</i> интрон	LSC
17424	(G)9	(G) ₈	(G)7	(G)7	(G)9	<i>гроС1</i> интрон	LSC
25296	(T) ₈	(T) ₈	(T)9	(T) ₈	(T) ₁₀	МГР atpI-atpH	LSC
25466	(A)10	(A) ₁₃	(A) ₂₁	(A)19	(A) ₂₀	МГР atpI-atpH	LSC
30166	(A)10	(A) ₁₂	(A) ₁₀	(A) ₁₀	(A)10	МГР atpA-psbD	LSC
35019	(A)9	(A)9	(A) ₁₆	(A) ₁₆	(A)8	МГР <i>psbC-psbZ</i>	LSC
35398	(A)18	(A) ₃₀	(A) ₂₄	(A)30	(A) ₂₂	МГР <i>psbC-psbZ</i>	LSC

Таблица 3.7. Полиморфные микросателлитные локусы в хлДНК у стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС.

35885	(A)9	(A) ₈	(A)7	(A)7	(A)7	MΓP psbZ-rps14	LSC
44324	(A) ₈	(A) ₈	(A)10	(A)14	(A) ₁₀	МГР ycf3-rps4	LSC
46721	(A)15	(A)15	(A)13	(A) ₂₂	(A)11	MГР rps4-ndhJ	LSC
50049	(T)8	(T) ₈	(T) ₈	(T)9	(T) ₈	МГР ndhC-atpE	LSC
50163	(T) ₁₀	(T) ₁₂	(T) ₁₀	(T)15	(T)10	МГР ndhC-atpE	LSC
50764	(T)11	(T) ₈	(T) ₇	(T) ₇	(T)7	МГР ndhC-atpE	LSC
51778	(T) ₁₀	(T)9	(T) ₂₁	(T) ₂₂	(T) ₁₂	МГР ndhC-atpE	LSC
54313	(A)15	(A)15	(A) ₁₇	(A) ₂₁	(A)16	МГР <i>atpB-rbcL</i>	LSC
58257	(A)7	(A)7	(A)7	(A)7	(A)8	MГР accD-psal	LSC
60017	(C) ₆	(C)7	(C)7	(C) ₇	(C)7	MГP ycf4-cemA	LSC
60434	(T) ₆	(T) ₆	(T) ₇	(T)8	(T)9	МГР ycf4-cemA	LSC
62683	(T)22	(T) ₂₀	(T)15	(T) ₁₆	(T)22	MГР petA-psbJ	LSC
64145	(A)9	(A)8	(A) ₁₄	(A)9	(A)9	MГP <i>psbE-petL</i>	LSC
64939	(A)23	(A) ₂₃	(A) ₂₃	(A)11	(A) ₂₃	MГP <i>psbE-petL</i>	LSC
65714	(T) ₁₆	(T) ₁₆	(T) ₁₆	(T) ₂₁	(T) ₁₃	МГР petG-psaJ	LSC
69743	(A) ₆	(A) ₆	(A) ₆	(A) ₆	(A)7	<i>clpP</i> интрон	LSC
69936	(T) ₁₀	(T) ₁₀	(T) ₁₃	(T) ₁₁	(T)9	<i>clpP</i> интрон	LSC
70545	(A)15	(A) ₂₀	(A)7	(A)7	(A)10	<i>clpP</i> интрон	LSC
70584	(T)9	(T) ₁₀	(T) ₁₀	(T)9	(T)9	<i>clpP</i> интрон	LSC
73405	(T)7	(T)7	(T) ₈	(T) ₈	(T)9	МГР <i>psbB-psbT</i>	LSC
77234	(A)10	(A)10	(A)11	(A) ₁₀	(A)9	МГР petD-rpoA	LSC
79932	(T)22	(T)15	(T)19	(T) ₁₇	(T)22	MГP rps8-rpl14	LSC
80456	(T) ₂₄	(T) ₂₄	(T) ₂₄	(T) ₂₄	(T)27	МГР rpl14-rpl16	LSC
82083	(T)8	(T) ₈	(T) ₈	(T) ₈	(T)9	MГP rpl16-rps3	LSC
83644	(T) ₈	(T)8	(T)9	(T)9	(T)8	MГP rps19-rpl2	IRA
101481	(T)9	(T)9	(T)9	(T)9	(T)10	MΓP rrn16-rrn23	IRA
119344	(T)7	(T)7	(T) ₈	(T) ₈	(T)7	МГР psaC-ndhD	SSC
120979	(A)16	(A) ₁₃	(A) ₂₀	(A)19	(A)10	МГР ndhD-ccsA	SSC
122970	(T) ₁₃	(T) ₁₂	(T) ₁₈	(T)19	(T) ₁₃	МГР ccsA-rpl32	SSC
133146	(A)9	(A)9	(A)9	(A)9	(A)10	MΓP rrn23-rrn16	IR _B

150984	(A)8	(A) ₈	(A)9	(A)9	(A)8	MГP rpl2-rps19	IR _B
--------	------	------------------	------	------	------	----------------	-----------------

В структуре исследуемых геномов также обнаружено 315 SNP. Локализованные SNP представлены всеми шестью возможными вариантами нуклеотидных замен, включая транзиции A/G (26,9 %), C/T (29,7 %) и трансверсии A/C (14,4 %), G/T (12,5 %), A/T (10,5 %), C/G (6,0 %). В целом наибольшее число полиморфный сайтов локализовано в большом однокопийном районе (LSC), наименьшее – в инвертированных повторах (IR), что характерно и для других цветковых растений (Ni et al., 2016; Shen et al., 2017). Из 315 SNP (приложение 1), 119 локализованы в экзонах белок кодирующих генов (табл. 3.8), причём 58 мутаций являются несинонимичными.

Известно, что хлоропластные гены цветковых растений характеризуются различной частотой точечных мутаций (Parks et al., 2009; Wicke et al., 2011). В нашем исследовании наиболее высокий уровень полиморфизма характерен для генов ycf1, rps2, atpA. При это в гене ycf1 выявлено наибольшее число несинонимичных мутаций. Также большое количество мутаций было выявлено в гене rbcL, но только в случае ЦМС линии НА89(MAX1). Низкая изменчивость была отмечена в генах, кодирующих белки реакционных центров фотосистем – psaB, psbB, psbD, psbC, при этом все локализованные в них мутации синонимичные. Единичный SNP обнаружен и в гене ycf2, продукт которого также влияет на сборку реакционных центров фотосистем. Полученные данные согласуются с результатами других авторов о том, что хлоропластные гены, непосредственно контролирующие белки фотосистем, обладают низкой изменчивостью у большинства цветковых растений (Allen et al., 2011; Wicke et al., 2011; Hoekstra et al., 2017).
Таблица 3.8. SNP локализованные в экзонах хлоропластных генов стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС.

Позиция в референ сном геноме	Рефере нсный геном - НА89 (ферт.)	PET1	PET2	ANN2	MAX1	Ген	Тип мугации
2984	А	А	А	А	G	matK	несинонимичная Phe195Ser
13459	Т	Т	Т	Т	С	гроВ	синонимичная
14470	А	А	А	А	G	гроВ	синонимичная
14496	А	Α	G	А	А	гроВ	несинонимичная Gln481Arg
14992	С	C	C	С	Т	гроВ	синонимичная
15565	Т	Т	C	Т	Т	гроВ	синонимичная
17643	А	Α	А	А	С	rpoC1	несинонимичная Met210Leu
17783	А	Α	C	С	А	rpoC1	синонимичная
17814	C	C	C	С	Т	rpoC1	несинонимичная Arg267Cys
18307	G	G	G	А	G	rpoC1	несинонимичная Arg431Gln
18530	G	G	Т	Т	Т	rpoC1	синонимичная
19839	C	C	Т	Т	С	rpoC2	синонимичная
20660	Т	C	Т	Т	Т	rpoC2	несинонимичная Leu490Pro
20750	C	C	C	Т	C	rpoC2	несинонимичная Thr520Ile
20945	Т	Т	Т	G	Т	rpoC2	несинонимичная Leu585Arg
21054	C	C	C	С	Т	rpoC2	синонимичная
22083	C	C	C	С	А	rpoC2	несинонимичная Asp964Glu
22539	C	C	C	С	Т	rpoC2	синонимичная
23220	С	C	Т	С	С	rpoC2	синонимичная
24138	Т	Т	C	Т	Т	rps2	синонимичная
24141	А	C	А	А	А	rps2	несинонимичная Gln178His
24198	С	C	Т	С	С	rps2	синонимичная
24758	Т	Т	Т	Т	С	atpA	синонимичная
28592	A	А	А	A	G	atpA	несинонимичная Ile61 Val
28747	G	G	G	G	А	atpA	синонимичная

29422	A	А	G	G	G	atpA	синонимичная
29458	C	C	А	A	A	atpA	синонимичная
29521	A	А	А	А	Т	atpA	синонимичная
29701	G	А	G	G	G	atpA	синонимичная
29783	С	С	Т	C	С	atpA	синонимичная
32669	А	А	G	А	А	psbD	синонимичная
34038	G	G	А	А	G	psbC	синонимичная
34218	G	G	А	А	А	psbC	синонимичная
38902	А	А	А	А	G	psaB	синонимичная
39980	G	А	А	А	А	psaA	синонимичная
40412	А	А	А	А	G	psaA	синонимичная
40748	C	C	C	Т	C	psaA	синонимичная
40880	A	А	А	A	G	psaA	синонимичная
41098	G	G	G	G	Т	psaA	несинонимичная Leu144Ile
42375	Т	Т	C	C	C	ycf3	синонимичная
48363	А	А	G	G	А	ndhJ	несинонимичная Vall07Ala
49305	A	А	G	G	G	ndhK	синонимичная
49678	A	А	А	А	Т	ndhC	синонимичная
52166	Т	Т	C	Т	Т	atpE	синонимичная
52330	C	С	C	C	Т	atpB	синонимичная
52386	C	С	Т	Т	C	atpB	несинонимичная Gly468Ser
52717	A	А	G	G	G	atpB	синонимичная
52734	A	А	А	А	G	atpB	синонимичная
53110	A	А	А	G	А	atpB	синонимичная
54726	Т	Т	C	C	Т	rbcL	синонимичная
55291	Т	Т	Т	Т	А	rbcL	несинонимичная Cys247Asn
55292	G	G	G	G	А	rbcL	несинонимичная Cys247Asn
55323	Т	Т	Т	Т	C	rbcL	синонимичная
55393	Т	Т	Т	Т	G	rbcL	несинонимичная Ser281 Ala
55396	C	C	C	C	Α	rbcL	несинонимичная Gln282Lys

55534	Т	Т	Т	Т	G	rbcL	несинонимичная Ser328Ala
55675	С	C	С	С	А	rbcL	несинонимичная Leu375Ile
55677	G	G	G	G	А	rbcL	несинонимичная Leu375Ile
55837	С	C	C	С	А	rbcL	несинонимичная Gln429Lys
55996	G	G	G	G	Т	rbcL	несинонимичная Asp482Tyr
57148	А	А	А	А	С	accD	несинонимичная Glu191Ala
57593	А	А	G	G	G	accD	синонимичная
59445	С	C	C	С	Т	ycf4	синонимичная
65328	С	C	C	С	Т	petL	несинонимичная Pro2Leu
72744	G	G	C	С	G	psbB	синонимичная
75058	А	А	А	А	G	petB	синонимичная
75067	Т	Т	Т	Т	С	petB	синонимичная
77299	Т	Т	С	С	Т	rpoA	синонимичная
78756	Т	Т	Т	С	Т	rps11	несинонимичная Lys8Arg
79664	G	G	Т	Т	Т	rps8	несинонимичная Pro72Thr
79820	Т	Т	G	G	Т	rps8	синонимичная
80718	G	А	G	G	G	rpl16	синонимичная
82328	G	G	G	G	А	rps3	синонимичная
82899	С	С	С	С	Т	rpl22	несинонимичная Ala128Thr
89152	А	А	А	А	G	ycf2	Ile1110Val
95380	А	А	G	G	А	ndhB	синонимичная
108400	С	С	G	G	С	ycfl	несинонимичная Asn271Lys
108541	С	А	А	А	А	ycfl	синонимичная
108697	G	А	G	G	G	ycf1	синонимичная
108722	А	А	А	А	С	ycfl	несинонимичная Ile379Leu
109194	С	C	C	Т	С	ycf1	несинонимичная Pro536Leu
109640	G	G	А	А	G	ycf1	несинонимичная Asp685Asn
109766	Т	Т	C	С	C	ycf1	синонимичная
109850	С	C	С	G	C	ycf1	несинонимичная Arg755Gly
110520	С	C	G	G	С	ycf1	несинонимичная Thr978Arg

110568	C	C	А	А	А	ycf1	несинонимичная Thr994Lys
110913	Т	Т	Т	Т	C	ycf1	несинонимичная Vall109Ala
110918	С	С	А	А	А	ycfl	несинонимичная His1111Asn
111048	С	С	С	С	А	ycfl	несинонимичная Ser1154Tyr
111059	С	С	С	G	C	ycfl	несинонимичная Pro1158Ala
111166	G	G	G	G	А	ycfl	синонимичная
111605	Т	Т	G	G	G	ycfl	несинонимичная Tyr1340Asp
111659	С	С	Т	Т	Т	ycf1	несинонимичная Pro1358Ser
111983	А	А	С	С	C	ycfl	несинонимичная Ile1466Leu
114382	Т	Т	С	С	Т	ndhH	несинонимичная Val298Ala
114585	С	С	Т	С	C	ndhH	несинонимичная Pro366Ser
114863	С	С	Т	С	C	ndhA	несинонимичная Pro64Leu
117052	С	С	С	С	Т	ndhI	синонимичная
117833	С	Т	Т	Т	Т	ndhG	синонимичная
118566	Т	Т	Т	С	Т	ndhE	синонимичная
118728	А	А	G	G	А	ndhE	синонимичная
119751	Т	Т	G	Т	Т	ndhD	синонимичная
119835	А	А	А	Т	А	ndhD	синонимичная
119952	С	С	Т	Т	C	ndhD	синонимичная
120314	Т	Т	С	С	C	ndhD	несинонимичная Leu296Pro
121676	А	А	А	А	C	ccsA	несинонимичная Asn167Lys
121775	С	С	С	С	Т	ccsA	синонимичная
121813	G	G	G	G	А	ccsA	несинонимичная His122Tyr
122087	С	С	А	А	C	ccsA	несинонимичная Leu30Phe
124343	G	G	А	А	G	ndhF	синонимичная
125027	А	А	C	С	C	ndhF	синонимичная
125593	Т	С	С	С	С	ndhF	несинонимичная Leu477Ser
125888	А	А	Т	А	А	ndhF	несинонимичная Gln573His
125944	G	G	G	G	Α	ndhF	несинонимичная Ser592Asn
125949	Α	А	Т	А	А	ndhF	несинонимичная Asn594Tyr

126087	G	G	Т	Т	Т	ndhF	несинонимичная Val640Phe
126194	С	C	C	C	А	ndhF	несинонимичная Phe675Leu
139255	Т	Т	C	C	Т	ndhB	синонимичная
145483	Т	Т	Т	Т	С	ycf2	несинонимичная Ile1110Val

Согласно полученным данным наибольшее количество SNP в кодирующих регионах хлоропластного генома было идентифицировано у ЦМС линии HA89(MAX1) в количестве 70 SNP, при этом 36 из них приводят к изменению аминокислотной последовательности белков, а наименьшее число - у ЦМС линии HA89(PET1) – 9 SNP, 3 из которых являются несинонимичными. У ЦМС линий HA89(PET2) и HA89(ANN2) выявлено примерно равное количество SNP в кодирующих областях генома – 54 и 51, а также число несинонимичных мутаций – 21 и 23, соответственно.

В результате сравнительного анализ хлоропластной ДНК у стерильных аналогов линии HA89 подсолнечника с различными типами ЦМС также выявлено 75 INDEL (приложение 1). Все INDEL локализованы в некодирующих областях хлоропластного генома, за исключением единичной мононуклеотидной делеции в гене *matK* у ЦМС линии HA89(PET2). Эта делеция приводит к сдвигу рамки считывания в 460 положении полипептида матуразы К и преждевременному стоп кодону.

Условно INDEL были разделены на короткие - размером до 10 п.н., и протяженные - размером более 10 п.н. Большая часть INDEL была представлена делециями, около 1-5 П.Н. В исследованных малыми инсерциями И хлДНК последовательностях за исключением HA89(PET1) были ЛИНИИ обнаружены протяженные INDEL, размером 14-24 п.н (табл. 3.9). Данные вставки и делеции могут быть основой для создания эффективных тест-систем, идентифицирующих данные типы ЦМС у подсолнечника.

Таблица 3.9. INDEL размером (14-24 п.н.) локализованные в хлоропластных геномах стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС.

Позиция в геноме фертильной линии НА89	Тип INDEL	HA89(PET2)	HA89(ANN2)	HA89(MAX1)	Локализация
23377-78	Инсерция	CTTICTITTATC TTITA			rpoC2-rps2
32066-67	Инсерция		TACATAAAAATT AGAATAGAAAG		atpA-psbD
49986-50004	Делеция			GTTTCCTTTT GCGGGGGCGT	ndhC-atpE
61429-30	Инсерция			TCCAGTAAA TAACAGAAT CGTGGA	cemA-petA
73364-65	Инсерция	AGGGTACCAG AGAA			psbB-psbT
78307-08	Инсерция		TCTCTTGTTTCT CTTGC		rpoA-rps11
126449-50	Инсерция	TTTAATTGAGT CTTTAATTCT			ndhF-rrn5
	Позиция в геноме фертильной линии НА89 23377-78 32066-67 49986-50004 61429-30 73364-65 78307-08 126449-50	Позиция в геноме фертильной линии НА89Тип INDEL23377-78Инсерция32066-67Инсерция49986-50004Делеция61429-30Инсерция73364-65Инсерция78307-08Инсерция126449-50Инсерция	Позиция в геноме фертильной линии НА89Тип INDELНА89(РЕТ2)23377-78ИнсерцияСТТТСТТТТАТС ТТТТА32066-67ИнсерцияСТТСТТТТАТС ТТТТА49986-50004Делеция61429-30Инсерция73364-65ИнсерцияАGGGTACCAG АGAA78307-08ИнсерцияТТТААТТGAGT СТТТААТТСАGT СТТТААТТСА	Позиция в геноме фертильной линии НА89Тип INDELНА89(PET2)НА89(ANN2)23377-78ИнсерцияСТТТСТТТТАТС ТТТА1000000000000000000000000000000000000	Позиция в геноме фертильной линии НА89 Тип INDEL НА89(PET2) НА89(ANN2) НА89(MAX1) 23377-78 Инсерция СТТТСТТТАТС ТТТТА навессс Навессс 1 32066-67 Инсерция СТТТСТТТАТС ТТТТА ТАСАТАААААТТ АGААТАGАААG 1 49986-50004 Делеция Гасатааааат СССССССССССССССССССССССССССССССССССС

Сравнительный анализ хлоропластных геномов ЦМС линий и фертильного аналога показал, что наибольшее число INDEL, также, как SSR и SNP, обнаружено у HA89(MAX1), а наименьшее - у HA89(PET1) (табл. 3.10).

Таблица 3.10. - Количество SSR, SNP и INDEL, идентифицированных у стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС.

		Тип последовательности											
Линия	Кодирующая ДНК		Интроны		Межгены			Всего					
	SNP	Indel	SNP	Indel	SSR	SNP	Indel	SSR	SNP	Indel	SSR		
HA89(PET1)	9	0	4	0	5	10	5	16	23	5	21		
HA89(PET2)	54	1	13	5	7	87	33	29	154	38	36		
HA89(ANN2)	52	0	10	4	6	80	32	32	142	36	38		
HA89(MAX1)	70	0	11	2	5	114	38	35	196	40	40		

Таким образом, структура и нуклеотидный состав хлоропластных геномов у фертильного и стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС (PET1, PET2, ANN2 и MAX1) в целом сходны. Однако сравнительный анализ геномов позволил нам локализовать 447 полиморфных сайта, в том числе 57 SSR, 315 SNP и 75 INDEL. Микросателлитные локусы в хлоропластной ДНК в основном представлены (A)_n и (T)_n повторами. Из 315 обнаруженных SNP, 119 локализованы в экзонах хлоропластных генов, 58 из которых являются несинонимичными. Только 1 из 75 INDEL был выявлен в кодирующей части хлоропластного генома у ЦМС линии HA89(PET2). Среди аллоплазматических ЦМС линий наибольшее число полиморфных сайтов по сравнению с фертильным аналогом было идентифицировано у ЦМС линии HA89(MAX1), а наименьшее – у ЦМС линии HA89(PET1).

3.3.2. Изменчивость митохондриальной ДНК у фертильного и стерильного аналогов линии НА89 подсолнечника с различными типами ЦМС

В отличие от хлоропластной ДНК в митохондриальной ДНК у стерильных аналогов линии НА89 подсолнечника были обнаружены не только малые мутации, но и значительные реорганизации структуры. В связи с этим подробный анализ митохондриального генома у каждой ЦМС линии выделен в отдельный раздел.

3.3.2.1. Митохондриальный геном ЦМС линии НА89(РЕТ1)

Paнee, с помощью рестрикционного анализа у стерильной линии CMSBaso подсолнечника на основе ЦМС типа РЕТ1 были выявлены две крупные аберрации мтДНК, приводящие к стерильности растений - инверсия участка размером 12,1 т.п.н. между генами *cob* и *atp1* и инсерция размером 4,7 т.п.н. между генами (Kohler et al., 1991). Нам с помощью полногеномного orf873 и apt1 секвенирования удалось не только подтвердить наличие этих реорганизаций митохондриального генома, но и более точно определить размер данных перестроек. Размер инверсии составил 11852 п.н., а вставки - 4732 п.н. Следует также отметить, что в мтДНК линии НА89(РЕТ1) нами была обнаружена еще одна перестройка по сравнению с фертильным аналогом, а именно делеция участка размером 451 п.н. в регионе cob-ccmFc (позиция 190335-190786 п.н. в мтДНК фертильной линии HA89). То есть, в *cob-atp1* участке митохондриального генома у линии НА89(РЕТ1) возникли три крупные перестройки, представленные инверсией размером 11852 п.н., инсерцией размером 4732 п.н. и делецией размером 451 п.н. Для наглядности область перестроек обозначена красным овалом на генетической карте ЦМС линии РЕТ1 (рис. 3.6)

Рисунок 3.6. Генетическая карта митохондриального генома ЦМС линии НА89(PET1) подсолнечника. Стрелками обозначены направления транскрипции генов мтДНК. Во внутреннем кольце серым и темно серым цветов отображено

соотношение АТ и GC нуклеотидных пар.

В результате инверсии участка мтДНК у ЦМС линии НА89(РЕТ1) транскрипция генов *orf873* и *ccmFc* протекает с противоположной цепи мтДНК, по сравнению с фертильным аналогом (рис 3.5 в разделе 3.2), а в результате инсерции возникает открытая рамка считывания *orfH522*. Авторами нескольких публикаций было показано, что именно экспрессия *orfH522* приводит к ЦМС типа

РЕТ1 (Kohler et al., 1991; Horn et al., 1996; Horn, 2002). Следует также отметить, что в результате биоинформатического поиска новых открытых рамок считывания в нуклеотидной последовательности данной инсерции нами была обнаружена еще одна OPC – *orf306*, кодирующая полипептид, состоящий из следующих 102 аминокислот – MTRKDRSAFLSFHQERHLWTSASTSSPSRVG IGTMDQDFWFPFDFQLRSLLLLEGYGFLSPGYRFIGSATLSIKAITPLIHTHSAPLT PERKLAHLSDWIRS.

Кроме крупных перестроек в митохондриальном геноме HA89(PET1) также были выявлены и другие изменения структуры ДНК, представленные 17 вариантными сайтами: 8 SSR, 7 SNP и 2 INDEL (табл. 3.11).

HA8	Таблица 3.11 89(РЕТ1).	. Полимо	орфные сай	а́ты митохон⊉	дриальной ДНК ЦМС линии
Π	пп				

Позиция в мтДНК фертильной линии НА89, п.н.	Тип	Фертильная линия НА89	HA89(PET1)	Локализация
6207	SSR	(A) ₈	(A)7	MГP nad2-ccmC
36361	SNP	Т	G	orf777 несинонимичная мутация Asp251Glu
46039	INDEL	А	-	MΓP rpl5-nad4
49272	SSR	(C)11	(C)9	MГP nad4-ccmB
51678	SSR	(G) ₁₀	(G)9	MГP nad4-ccmB
75332	SNP	А	С	MГP rpl10-nad1
116777	SNP	G	Т	MГP atp9-rps4
169028	SNP	G	Т	nad6 несинонимичная мутация Ser232Tyr
170185	SSR	(T) ₁₄	(T) ₁₂	MΓP nad6-ymf16
178406	SSR	(T)9	(T) ₈	<i>ymf16</i> интрон
184739	SSR	(A) ₁₀	(A) ₁₁	MГР ymf16-cob
188363	SSR	(T)11	(T) ₁₀	<i>соb</i> интрон
202672	SNP	Т	С	МГР orf873-atp1
209335-209336	INDEL	AA	-	МГР <i>atp1-ccmFn</i>
230112	SNP	А	С	<i>rpl16</i> несинонимичная мутация Lys32Gln

248266	SSR	(A) ₁₄	(A) ₁₀	MΓP rpl16-matR
269062	SNP	G	С	<i>atp6</i> несинонимичная мутация Lys46Asn

Состав полиморфных SSR локусов был следующим: $(A)_n - 37,5 \%$, $(T)_n - 37,5 \%$, $(C)_n - 12,5 \%$, $(G)_n - 12,5 \%$. Большая часть (85,7 %) точечных мутаций представлена трансверсиями, а именно: G/T - 3 (42,8 %), A/C - 2 (28,6%), C/G - 1 (14,3 %). Трансверсии типа A/T не обнаружены. Была также выявлена 1 транзиция C/T (14,3 %). 3 из 7 обнаруженных нами SNP локализованы в межгенных регионах, а остальные 4 SNP затрагивают кодирующую часть генома, приводя к несинонимичным заменам в генах *orf777*, *nad6*, *rpl16* и *atp6*. INDEL представлены малыми делециями (1-2 п.н.), локализованые только в межгенных регионах. Важно отметить, что число SNP, SSR и INDEL в мтДНК HA89(PET1) в 2,5-3,3 раза меньше по сравнению с хлДНК (см. раздел 3.3.1).

Таким образом, в мтДНК ЦМС линии НА89(РЕТ1) по сравнению с фертильным аналогом были выявлены следующие изменения структуры: 1 инверсия (11852 п.н.), 1 инсерция (4732 п.н.), 1 делеция (451 п.н.), 8 SSR, 7 SNP и 2 INDEL. В результате этих изменений структуры размер митохондриального генома НА89(РЕТ1) составил 305217 п.н., что превышает на 4270 п.н. соответствующий показатель фертильной линии НА89. С функциональной точки зрения данные изменения структуры мтДНК привели к возникновению 2-х открытых рамок считывания *orf306* и *orfH522*.

Аннотированный митохондриальный геном ЦМС линии HA89(PET1) подсолнечника был размешен в банке данных NCBI, его идентификатор – MG735191.1.

3.3.2.2. Митохондриальный геном ЦМС линии НА89(РЕТ2)

Результатом сборки и аннотации митохондриального генома ЦМС линии НА89(РЕТ2) является кольцевая молекула ДНК размером 316582 п.н., представленная на рисунке 3.7.

Рисунок 3.7. Генетическая карта митохондриального генома ЦМС линии НА89(РЕТ2) подсолнечника. Стрелками обозначены направления транскрипции генов мтДНК. Во внутреннем кольце серым и темно серым цветов отображено соотношение АТ и GC нуклеотидных пар.

Митохондриальный геном ЦМС линии НА89(РЕТ2) значительно отличается от фертильного аналога, как перестройками размером 100 и более пар нуклеотидов, так и менее протяженными (1-29 п.н.) изменениями структуры. Всего у ЦМС линии НА89(РЕТ2) обнаружено 6 крупных реорганизаций митохондриального генома: 2 транспозиции, 2 делеции и 2 инсерции. По сравнению с митохондриальным геномом фертильной линии НА89 в мтДНК НА89(РЕТ2) выявлены две транспозиции размером около 27,5 т.п.н. и 106,5 т.п.н. Транспозиция размером 27,5 т.п.н. соотносится с 36700–64200 нуклеотидными позициями мтДНК фертильной линии НА89 и на генетической карте фланкирована генами *atp8* и *tmD*. Транспозиция размером 106,5 т.п.н. соотносится с 194440–300945 нуклеотидными позициями мтДНК фертильной линии НА89 и на генетической карте фланкирована генетической карте фланкирована генами *atp8* и *tmD*. Транспозиция мтДНК фертильной линии НА89 и на генетической карте фланкирована генами *ccmFc* и *tmK*. Эти две транспозиции не затрагивают кодирующих областей мтДНК и не приводят к возникновению новых ОРС. Тем не менее, в геноме НА89(РЕТ2) можно отметить пространственное сближение генов *cob* и *atp8* (рис. 3.7), которые в митохондриальном геноме фертильной линии располагаются на значительном удалении (около 150 т.п.н.) друг от друга (рис. 3.5 в разделе 3.2).

В митохондриальном геноме НА89(РЕТ2) также идентифицированы две делеции размером 711 п.н. и 3780 п.н. В мтДНК НА89(РЕТ2) отсутствуют участки мтДНК фертильной линии, соответствующие позициям 35682–36393 (делеция 711 п.н.) и 190659–194439 (делеция 3780 п.н.). Делеция 3780 п.н. не затрагивает кодирующей части генома, а делеция 711 п.н. приводит к потере гена *orf777*. На сегодняшний день функция белка, кодируемого *orf777*, неизвестна. Более того *orf777* не имеет сходства с другими митохондриальным генами. Отсюда можно предположить, что элиминация гена *orf777* в мтДНК НА89(РЕТ2) не связана с ЦМС фенотипом.

Наиболее функционально значимые среди выявленных перестроек митохондриального генома являются две инсерции размером 5050 п.н. и 15885 п.н. На генетической карте мтДНК НА89(РЕТ2) инсерции обозначены красными овалами (рис. 3.7). Инсерция 5050 п.н. была локализована в межгенном регионе (275230-275231 мтДНК atp6-coxII позиции фертильной линии). Поиск потенциальных ОРС в данной инсерции выявил только одну отрытую рамку считывания - orf645, кодирующую полипептид, состоящий из следующих 215 аминокислот – MARKGNPISVRLDLNRSSDSSRFVESTIHASIFFILLSLTFQNQLK KGGISLPVVKHGLLLIFILLLSIFLMNELYNAVVPFLAKSGDSGINPLPGPSDQNSI

FPLIEEGEVPSESRPKINRDPEFCISFQNACDLESEISEIMETLLHEKGVVDLSQREI KREVEGFLSNVWDMEPIPRNRRLTAILKSLRSRGVNSRNFKDFEKHIKNIPVLL.

23 аминокислоты на N-конце этого полипептида комплиментарны N-концу митохондриального рибосомального белка S3. Проведенный нами анализ транскрипционной активности *orf645* свидетельствует, что мРНК этого гена представлены только в тканях растений ЦМС линии HA89(PET2) и отсутствует у фертильных растений линии HA89.

Следует отметить, что молекулярной причиной ЦМС у цветковых растений чаще всего является химерный белок, имеющий в своем составе трансмембранный домен, подобный субъединицам АТФ-синтазы или белкам ассоциированными с дыхательной цепью переноса электронов (Gillman et al., 2007; Yang et al., 2009). Исходя из этого, можно предположить, что возникновение открытой рамки считывания *orf645* в мтДНК НА89(PET2) не связано в данном случае с ЦМС фенотипом.

Вторая инсерция размером 15885 п.н. локализована в некодирующей части генома между генами nad4L и ccmFc. Данная вставка условно была разделена нами на три области (рис. 3.8) Первая, включающая 9482 п.н., имеет полное сходство с другим участком митохондриального генома НА89(РЕТ2) (позициями 126260-135741). Эта область повтора содержит не кодирующих последовательностей, за исключением гена *atp6*. Следующая область размером 4849 п.н. представлена уникальной последовательностью митохондриального генома HA89(PET2), в которой мы определили новую OPC - orf2565. Третья область размером 1554 п.н. включает как повторяющиеся, так и уникальные последовательности. С функциональной точки зрения этот участок инсерции (1554 п.н.) представляет собой дупликацию гена atp9 (позиции 114341-114640) мтДНК фертильной линии НА89) с последующей делецией размером 12 п.н. и инсерцией размером 271 п.н. В результате этих перестроек возникают две открытые рамки считывания – orf228 и orf285. Таким образом, инсерция размером 15885 п.н. в митохондриальном геноме HA89(PET2) приводит к дупликации гена *atp6* и возникновению трех открытых рамок считывания orf2565, orf228 и orf285.

мтДНК НА89(РЕТ2) 35686-51570 п.н.

Рисунок 3.8. Схематическое изображение инсерции размером 15885 п.н., локализованной у ЦМС линии НА89(РЕТ2). Гены на схеме расположены согласно направлению их транскрипции.

Несмотря на дупликацию гена *atp6*, уровень мРНК данного гена не отличался у ЦМС линии и ее фертильного аналога. Маловероятно, что дупликация гена *atp6* может быть причиной ЦМС типа РЕТ2. Это можно предположить и в случае с *orf2565*. *Orf2565* кодирует белок, состоящий из 855 аминокислот (приложение 3). Поиск гомологичных белков в базе данных NCBI показал, что белок, кодируемый *orf2565*, относится к В-семейству ДНК полимераз и не содержит мембранно-связывающих мотивов.

Orf228 кодирует полипептид, состоящий из 76 аминокислот (приложение 3), среди которых 75 идентичны С-концу белка, кодируемого *atp9*. Другими словами, *orf228* – это часть гена *atp9*, у которого в результате инсерции размером 271 п.н. образовался новый стартовый кодон. IX субъединица АТФазы содержит на С-конце и N-конце два трансмембранных домена (рис. 3.9). Белок, кодируемый *orf228*, также содержит два потенциальных мембранно-связывающих мотива, однако по сравнению с IX субъединицей АТФазы в N-концевом мотиве у *orf228* отсутствуют 4 аминокислоты. Эти различия могут влиять на взаимодействие белка, кодируемого *orf228*, с митохондриальными мембранами. Другая OPC - *orf285* кодирует полипептид, состоящий из 95 аминокислот (приложение 3) из

которых 18 комплементарны N-концу белка, кодируемого *atp9*. То есть *orf228* и *orf285* суммарно кодируют 93 из 99 аминокислот IX субъединицы АТФазы. В полипептиде, кодируемым *orf285*, также обнаружен трансмембранный домен (рис. 3.9).

Рисунок 3.9. Расположение трансмембранных доменов в белках, кодируемых A *atp9;* Б - *orf228;* В - *orf285.* Ось абсцисс отображает позиции аминокислот в белке. Ось ординат - взаимодействие полипептида с внутренней (синяя линия) и внешней (сиреневая линия) митохондриальными мембранами и вероятность формирования трансмембранного домена (красные линии).

Определение уровня транскрипции *orf228* оказалось труднореализуемой задачей из-за практически полного сходства (>97 %) нуклеотидного состава *orf228* с *atp9*. Однако мы определили, уровень транскрипции *orf285*, которая была характерна только для растений ЦМС линии HA89(PET2). Также мы обнаружили, что *orf228* и *orf285* транскрибируются в единой полицистронной матричной PHK.

Кроме крупных перестроек в мтДНК НА89(РЕТ2) по сравнению с фертильным аналогом были обнаружены вариантные сайты: 14 SSR, 55 SNP и 13 INDEL (табл. 3.12).

Таблица 3.12. Полиморфные сайты митохондриальной ДНК ЦМС линии HA89(PET2).

Позиция в мтДНК фертильной линии НА89, п.н.	Тип	Фертильная линия НА89	HA89(PET2)	Локализация
3031	SSR	(G)5	(G) ₆	МГР nad2-ccmC
3107	SSR	(T)5	(T) ₆	MГP nad2-ccmC
3275-3276	INDEL	TA	T TT A	MГP nad2-ccmC
3281-3281	INDEL	AT	A T T	MГP nad2-ccmC
4715	SSR	(T) ₈	(T)9	MГP nad2-ccmC
6207	SSR	(A)8	(A)7	MГP nad2-ccmC
6660	SNP	А	G	MГP nad2-ccmC
7404	SSR	(G) ₁₀	(G)9	MГP nad2-ccmC
7919	INDEL	А	-	MГP nad2-ccmC
9796	SNP	Т	С	MГP nad2-ccmC
10467	SNP	А	С	MГP nad2-ccmC
10924	SNP	А	С	MГP nad2-ccmC
12314	SNP	Т	С	MГP nad2-ccmC
19594	SNP	G	А	МГР ccmC-atp4
23917	SNP	G	Т	МГР ccmC-atp4
31803	SNP	А	С	МГР nad4L-orf777
34099	SNP	А	С	МГР nad4L-orf777
34135-34136	INDEL	AT	ATGT	МГР nad4L-orf777
34162	SNP	Т	С	МГР nad4L-orf777
35031	SNP	С	А	МГР nad4L-orf777
35114	SNP	С	А	МГР nad4L-orf777
35478	SNP	Т	С	МГР nad4L-orf777

35511	SNP	G	А	МГР nad4L-orf777
35596	SNP	G	С	МГР nad4L-orf777
42296	SNP	С	А	МГР <i>coxIII-rpl5</i>
49273	SSR	(C)11	(C)10	МГР nad4-ccmB
50857	SNP	С	А	МГР nad4-ccmB
51679	SSR	(G) ₁₀	(G)9	МГР nad4-ccmB
62361	SNP	Т	G	MIP nad4-ccmB
62404	SNP	G	А	MГP nad4-ccmB
63434-63435	INDEL	TC	TCC	MГP nad4-ccmB
71498-71499	INDEL	GT	GGGGCT	MΓP rpl10-nad1
75333	SNP	А	С	MΓP rpl10-nad1
91106	SNP	G	Т	MΓP rpl10-nad1
91107	SNP	А	С	MΓP rpl10-nad1
105475	SSR	(T)35	(T)25	МГР nad1-coxI
108201	SNP	Т	G	MГР rps11-nad5
115916	SNP	Т	G	МГР atp9-rps4
119332	SNP	G	А	МГР atp9-rps4
121109-121110	INDEL	CC	CTTC	МГР atp9-rps4
122991	SNP	А	С	<i>rps4</i> синонимичная мутация
133548	SNP	Т	А	MΓP rrn26-rrn5
133549-133550	INDEL	AT	AGG	MΓP rrn26-rrn5
133550	SNP	Т	G	MΓP rrn26-rrn5
133551	SNP	А	С	MΓP rrn26-rrn5
156215	SNP	С	А	MГР rps13-nad6
156623-156624	INDEL	CC	ССТАС	MГР rps13-nad6
157461	SNP	Т	G	MГP rps13-nad6
170187	SSR	(T) ₁₄	(T)12	MГP nad6-ymf16
174934-174935	INDEL	AC	ACTCGACTGAAA GGAAAGGTACG AAGTGGC	MΓP nad6-ymf16
175181	SNP	G	Т	МГР nad6-ymf16
188365	SSR	(T) ₁₁	(T) ₁₀	сов интрон

189982	SNP	G	Т	MΓP cob-ccmFc
195010	SNP	G	Т	MΓP cob-ccmFc
195017	SNP	С	А	MΓP cob-ccmFc
200176	SNP	G	А	<i>ccmfC</i> интрон
200517	SNP	G	А	<i>ccmfC</i> интрон
204992	SNP	С	А	МГР atp1-ccmFn
204848-204849	INDEL	AA	ATA	МГР atp1-ccmFn
207967	SSR	(G) ₁₀	(G) ₁₂	МГР atp1-ccmFn
209460	SNP	G	А	МГР atp1-ccmFn
212640	SSR	(C)9	(C) ₁₂	МГР atp1-ccmFn
215918	SNP	С	Т	MГР ccmFn-rps3
223919	SNP	А	С	MГР ccmFn-rps3
223927-223928	INDEL	GA	GAA	MГР ccmFn-rps3
226979-226980	INDEL	AC	ACGTTGTTTTC	MГР ccmFn-rps3
232828	SNP	G	Т	MΓP rpl16-matR
239882	SNP	G	А	MΓP rpl16-matR
239990	SNP	А	С	MΓP rpl16-matR
241037	SNP	G	А	МГР rpl16-matR
241477	SNP	А	С	МГР rpl16-matR
246055	SNP	С	Т	МГР rpl16-matR
248268	SSR	(A)14	(A)9	МГР rpl16-matR
249349	SSR	(T) ₈	(T)9	MΓP rpl16-matR
249363	SNP	С	А	МГР rpl16-matR
260903	SNP	G	Т	MГP nad9-atp6
262082	SNP	G	А	MΓP matR-nad9
269064	SNP	G	С	atp6 несинонимичная мутация Lys46Asn
269136	SNP	А	С	<i>atp6</i> синонимичная мутация
270678	SNP	G	Т	MГР atp6-coxII
273346	SNP	С	А	МГР atp6-coxII
276836	SNP	Т	G	MГР atp6-coxII

Состав полиморфных SSR локусов был следующим: (T)_n – 42,8 %, (G)_n – 28,6 %, (C)_n – 14,3%, (A)_n – 14,3%. Большая часть (69,1 %) точечных мутаций представлена трансверсиями, а именно: A/C - 21 (38,2 %) G/T - 14 (25,5 %), C/G - 2 (3,6 %) A/T - (1,8 %). Транзиции (30,9 %) были представлены следующими заменами: A/G - 11 (20 %) C/T - 6 (10,9 %). Абсолютное большинство (94,5 %) выявленных SNP затрагивают некодирующие области митохондриального генома. Только 3 SNP были локализованы в кодирующей последовательности генов *rps3* и *atp6*, и только одна мутация привели к замене лизина на аспарагин в 46 положении VI субъединицы $AT\Phi$ -синтазы. Все 13 обнаруженных INDEL локализованы в некодирующих областях мтДНК. По сравнению с хлДНК в мтДНК линии HA89(PET2) выявлено значительно меньше полиморфных сайтов: SSR в 2,7 раза, SNP и INDEL в 2,8 раз. При этом частота SNP в хлоропластных генах (0,696 SNP на 1 т.п.н.) в 7 раза выше, чем в митохондриальных (0,1 SNP на 1 т.п.н.).

Таким образом, в мтДНК ЦМС линии НА89(РЕТ1) по сравнению с фертильным аналогом были выявлены следующие изменения структуры: 2 транспозиции (27,5 и 106,5 т.п.н.), 2 делеции (711 и 3780 п.н.), 2 инсерции (5050 и 15885 п.н.), 14 SSR, 55 SNP и 13 INDEL. В результате этих изменений структуры размер митохондриального генома НА89(РЕТ2) составил 316582 п.н., что на 15635 п.н. превышает соответствующий показатель фертильной линии НА89. С функциональной точки зрения данные изменения структуры мтДНК привели к делеции гена *orf777*, дупликации гена *atp6* и возникновению 4-х открытых рамок считывания: *orf228, orf285, orf645* и *orf2565*. Мы предполагаем, что наиболее вероятной причиной ЦМС типа РЕТ2 подсолнечника является возникновение в митохондриальном геноме двух открытых рамок считывания *orf228* и *orf285,* кодирующих *atp9*-химерные полипептиды.

Аннотированный митохондриальный геном ЦМС линии HA89(PET2) подсолнечника был размешен в банке данных NCBI, его идентификатор - MG770607.2.

3.3.2.3. Митохондриальный геном ЦМС линии НА89(MAX1)

Результатом сборки и аннотации митохондриального генома ЦМС линии HA89(MAX1) является кольцевая молекула ДНК размером 295586 п.н., представленная на рисунке 3.10.

Рисунок 3.10. Генетическая карта митохондриального генома ЦМС линии НА89(MAX1) подсолнечника. Стрелками обозначены направления транскрипции генов мтДНК. Во внутреннем кольце серым и темно серым цветов отображено соотношение АТ и GC нуклеотидных пар.

Митохондриальный геном ЦМС линии HA89(MAX1) существенно отличается от фертильного аналога, как крупными перестройками, так и

незначительными изменениями структуры. Всего было выявлено 8 крупных перестроек в мтДНК НА89(МАХ1), в том числе 1 инвертированная транспозиция, 4 делеции и 3 инсерции.

В митохондриальном геноме HA89(MAX1) по сравнению с фертильным аналогом была обнаружена инвертированная транспозиция участка размером около 110 т.п.н., фланкированного генами *orf*873 и *atp*8. Границы транспозиции обозначены синими линиями на генетической карте мтДНК HA89(MAX1) (рис. 3.10). Интересно отметить, что транспозиция затрагивает более трети митохондриального генома, изменяя направления транскрипции целого ряда генов.

Также в митохондриальном геноме НА89(МАХ1) идентифицированы 4 делеции размером 439 п.н., 978 п.н., 3183 п.н. и 14296 п.н. (табл. 3.13). Несмотря на значительные размеры делетируемых участков данные изменения структуры мтДНК практически не затронули кодирующих областей генома, за исключением делеции размером 978 п.н., в результате которой в митохондриальном геноме НА89(МАХ1) полностью удален ген *orf777*. Данный ген также делетирован и у ЦМС линии НА89(РЕТ2).

Таблица 3.13. Делеции размером более 100 п.н., выявленные в митохондриальном геноме ЦМС линии НА89(МАХ1).

Размер	Позиции в мтДНК	Локализация делеции на	Гены, входящие
делетируемого	фертильной линии НА89,	генетической карте мтДНК	в делетируемый
участка, п.н.	П.Н.	фертильной линии НА89	участок
439	56164-56602	nad4-ccmB	-
978	35559-36536	nad4L-orf777-atp8	orf777
3183	272049-275231	nad9-coxII	-
14296	286490-300785	coxII-nad2	-

Среди локализованных мутаций в мтДНК НА89(МАХ1) наибольший интерес представляют инсерции размером 1999 п.н., 5272 п.н. и 6583 п.н., обозначенные красными овалами на генетической карте мтДНК НА89(МАХ1) (рис. 3.10). Инсерция 1999 п.н. расположена в межгенном регионе *nad4-ccmB*, в

том же участке митохондриального генома, что и делеция размером 439 п.н. Эта инсерция интересна тем, что представляет собой вставку нуклеотидов идентичных области инвертированного повтора (IR) хлоропластного генома (позиции 102508-104507 или 130128-132127 хлДНК НА89(МАХ1)), включающую часть гена хлоропластной рибосомальной РНК – *rrn23*. Инсерция размером 5272 п.н. локализована в межгенном регионе *atp5-coxII*, в том же участке мтДНК, что и делеция размером 3183 п.н. Около 80 % нуклеотидов данной вставки комплементарны (99 % сходство) нуклеотидной последовательности другой инсерции размером 5050 п.н., обнаруженной в мтДНК ЦМС линии НА89(РЕТ2). Как у линии НА89(РЕТ2), так и НА89(МАХ1) в результате этих инсерций возникла активно транскрибируемая новая открытая рамка считывания *orf645*.

Наиболее протяженная инсерция (6583 п.н.) в мтДНК ЦМС линии HA89(MAX1) расположена в межгенном регионе orf 873-nad4L на 5' конце 110 т.п.н. инвертированной транспозиции (рис. 3.10). Данная вставка условно была поделена нами на две области. Первая область, включающая участок размером 4767 п.н. (позиции 167500-172267 в мтДНК HA89(MAX1)), комплиментарна (99 % сходство) другой вставке размером 4732 п.н., обнаруженной в мтДНК ЦМС линии НА89(РЕТ1). В данной области, были выявлены открытые рамки считывания orf306, orf480. Вторая область, состоящая из 1816 п.н. (позиции 172268-174083 в мтДНК НА89(МАХ1)), содержит, как повторяющуюся, так и уникальную последовательности. Последовательность размером 1227 п.н. идентична другому участку мтДНК НА89(МАХ1) (позиции 227962-229169), в результате чего этот участок генома оказался дуплицированным. Дуплицированный содержит себе участок В часть нуклеотидной последовательности гена *atp6* и в сочетании с уникальной последовательностью вставки образует новую рамку считывания - *orf1287*. Таким образом, в результате инсерции размером 6583 п.н. в митохондриальном геноме ЦМС линии HA89(MAX1) возникли три новых OPC - orf306, orf480 и orf1287.

Открытая рамка считывания *orf306*, обнаруженная в мтДНК НА89(МАХ1), идентична *orf306* в мтДНК ЦМС линии НА89(РЕТ1) (см. раздел 3.3.2.1). *Orf480*

кодирует белок из следующих 160 аминокислот – MLFRLTARSLFLSFSFFML VGRSVFMEQITPYKKGRSVSGPSSQKNLPLPGGSGDDPDKRKKVPVSKDTANA AVSLLRQVILEILARARDPSLREGLHNPTTQAWNRAITTAIQERSGNYSISTLGAI QRTIEVAGELVFEGEQSAFFLRVLQLVRERYS. Последовательность из 128 аминокислот этого полипептида идентична последовательности 16,5 кДа белка, который кодируется *orfH522* и является причиной ЦМС типа PET1 (см. раздел 3.3.2.1). При этом важно отметить, что 16,5 кДа белок (*orfH522*) содержит мембрано-связывающий мотив, а в белке, кодируемом *orf480*, трансмембранный домен отсутствует. Отсюда можно предположить, что *orf480* не связана с возникновением стерильного фенотипа у линии HA89(MAX1) подсолнечника.

Orf1287 представляет собой *atp6*-химерный ген, состоящий из 1290 п.н., среди которых 760 п.н. комплементарны гену *atp6*, а остальные 530 п.н. уникальны. *Orf1287* транскрибируется только в тканях растений ЦМС линии HA89(MAX1) и не экспрессируется у фертильных растений линии HA89. Результатом трансляции *orf1287* является белок из 429 аминокислот, у которого 250 аминокислот на С-конце идентичны α -субъединице митохондриальной АТФ-синтазы. Эти 250 аминокислот формируют 7 трансмембранных доменов (рис. 3.11). Поиск в базе данных NCBI *orf1287* гомологичных белков выявил сходство *orf1287* с другим *atp6*-химерным белком, состоящим из 437 аминокислот (идентификатор NCBI CAA57790.1), обнаруженного у линии подсолнечника с ЦМС типа ANT1 (Spassova et al., 1994). Аминокислотные последовательности этих белков сходны приблизительно на 74 %.

MPNNSHAFLGRTKPTISDKSFLIFRARSGTTRKKIFTMTMKDFIQRFKRT VSPVLNESEEVPIQFGLSMDEIVEANLEKFTLYLEGDSVTPASIEALTKL NYLYVFMRHDLEGTVKPAAIRSLQKELNKTPPESVVPKLESIYQNELKSL DNFLEPFEVNLSSKDFLNYCDEFYRSS**SPLEQFDILPLIPMNIGNLYFSF** TNSSLFMLLTLSLVLLLIHFVTKKGGGNLVPNAWQSLVELIYDFVLNLVN EQIGGLSGNVKQKFFPCILVTFTFLLFCNLQGMIPYSFTVTSHFLITLGL SFSIFIGITIVGFQRNGLHFLSFLLPAGVPLPLAPFLVLLELISYCFRAL SLGIRLFANMMAGHSLVKILSGFAWTMLCMNDLLYFIGDLGPLFIVLALT GLELGVAILQAYVFTILICIYLNDAINLH

Рисунок 3.11. Расположение трансмембранных доменов в белке, кодируемом orf1287. Ось абсцисс отображает позиции аминокислот в белке. Ось ординат взаимодействие полипептида с внутренней (синяя линия) и внешней (сиреневая линия) митохондриальными мембранами и вероятность формирования трансмембранного домена (красные линии). Жирным шрифтом выделены аминокислоты идентичные в белках, кодируемых orf1287 и atp6. Красным подчеркиванием обозначены аминокислоты, формирующие трансмембранный домен.

Кроме крупных аберраций в мтДНК ЦМС линии HA89(MAX1) были выявлены 18 SSR, 230 SNP и 29 INDEL (приложение 2). Состав полиморфных SSR локусов был следующим: (T)_n – 38,9 %, (G)_n – 33,3 %, (A)_n – 16,7%, (C)_n – 11,1% (табл. 3.14).

Таблица 3.14. Полиморфные SSR локусы митохондриальной ДНК ЦМС линии HA89(MAX1).

Позиция в мтДНК фертильной линии НА89, п.н.	Фертильная линия НА89	HA89(MAX1)	Локализация
1462	(A)8	(A)7	MГР coxII-nad2
3031	(G)5	(G) ₆	MГP nad2-ccmC
3107	(T)5	(T) ₄	MГP nad2-ccmC
4715	(T) ₈	(T)9	MГP nad2-ccmC
7404	(G)10	(G) ₈	MГP nad2-ccmC
44412	(G) ₆	(G)7	MГР rpl5-nad5
49273	(C)11	(C)9	MГP nad4-ccmB
51679	(G) ₁₀	(G)9	MГP nad4-ccmB
86188	(T) ₇	(T) ₆	МГР rpl10-nad1
170187	(T)14	(T) ₇	MГP nad6-ymf16
178408	(T)9	(T) ₈	<i>утf16</i> интрон
179735	(A)10	(A)9	MΓP ymf16-cob
188365	(T)11	(T)9	<i>соb</i> интрон
190823	(C) ₇	(C)10	МГР cob-ccmFc
212024	(G)9	(G) ₈	MГР atpl-ccmFn
236229	(T) ₈	(T) ₇	МГР rpl16-matR
248268	(A)14	(A)10	МГР rpl16-matR
284453	(G)9	(G)7	<i>coxII</i> интрон

Большинство (65,7 %) точечных мутаций в мтДНК ЦМС линии HA89(MAX1) представлены трансверсиями, а именно: A/C – 65 (28,3%), G/T – 60 (26,1 %), C/G – 15 (6,5 %), A/T – 11 (4,8 %). Среди транзиций (34,3 %) обнаружены следующие частоты нуклеотидных замен: A/G – 44 (19,1%), C/T – 35 (15,2 %). При этом большая часть (85,2 %) вариантных сайтов была локализована в некодирующих областях генома, тогда как 34 SNP, суммированные в таблице 3.15, локализованы в экзонах митохондриальных генов.

Таблица 3.15. SNP, выявленные в экзонах митохондриальных генов ЦМС линии HA89(MAX1).

Позиция в мтДНК фертильной линии НА89, п.н.	Фертильная линия НА89	HA89(MAX1)	Ген	Тип мутации
28717	Т	С	nad4L	синонимичная мутация
28803	А	G	nad4L	несинонимичная мутация Ser50Pro
112693	Т	G	nad5	синонимичная мутация
169209	А	G	nad6	синонимичная мутация
188296	G	Т	cob	синонимичная мутация
188466	С	А	cob	несинонимичная мутация Asn42Lys
202282	G	С	orf873	несинонимичная мутация Ala129Gly
202308	С	Т	orf873	синонимичная мутация
202311	Т	С	orf873	синонимичная мутация
202324	G	Т	orf873	несинонимичная мутация Ser115Glu
202325	А	С	orf873	несинонимичная мутация Ser115Glu
202332	С	Т	orf873	несинонимичная мутация Glu112Gly
202333	Т	С	orf873	несинонимичная мутация Glu112Gly
202350	Т	С	orf873	синонимичная мутация
202353	Т	С	orf873	синонимичная мутация
202380	С	G	orf873	несинонимичная мутация Trp96Cys
202441	С	G	orf873	несинонимичная мутация Cys76Ala
202442	А	С	orf873	несинонимичная мутация Cys76Ala
202445	А	G	orf873	синонимичная мутация
202446	С	Т	orf873	синонимичная мутация
202455	G	Т	orf873	синонимичная мутация
202520	Т	С	orf873	несинонимичная мутация Ile50Val
202526	G	Т	orf873	несинонимичная мутация Leu48Ile
202538	Т	A	orf873	несинонимичная мутация Ile44Leu
202539	Т	С	orf873	несинонимичная мутация Ile44Leu
202548	Т	G	orf873	несинонимичная мутация Leu40Phe
202554	С	A	orf873	несинонимичная мутация Leu38Phe

202583	Т	G	orf873	несинонимичная мутация Thr29Pro
202605	С	А	orf873	несинонимичная мутация Met21Ile
202616	Т	G	orf873	несинонимичная мутация Ile18Leu
202620	С	Т	orf873	синонимичная мутация
202628	Т	С	orf873	несинонимичная мутация Trh14Ala
269064	G	С	atp6	несинонимичная мутация Lys46Asn
269155	Т	С	atp6	несинонимичная мутация Tyr77His

Следует подчеркнуть, что 26 из 34 SNP, выявленных в кодирующих регионах мтДНК НА89(MAX1), локализованы всего лишь в одном гене - orf873. Учитывая консервативность митохондриальных генов, такая изменчивость в orf873 на первый взгляд кажется парадоксальной. Однако именно в регионе мтДНК вблизи orf873 И находится «горячая точка» рекомбинации митохондриального генома ЦМС линии HA89(MAX1), в которой мы обнаружили инвертированную транспозицию размером 110 т.н.п. и инсерцию размером 6583 п.н. Крупные перестройки мтДНК могли привести к увеличению числа точечных мутаций или к нарушению функции orf873 с последующим накоплением точечных мутаций в данном участке генома. Анализ транскрипционной активности показал, что уровень мРНК orf873 в тканях ЦМС линии HA89(MAX1) незначительно отличается от фертильного аналога, в связи с чем псевдогенизация orf873 маловероятна. Orf873 гомологи найдены в мтДНК многих других представителей цветковых растений: Lactuca sativa L (GeneBank ID PLY75385.1), Beta vulgaris L (GeneBank ID NP_064062.1), Vicia faba L (GeneBank ID AGC78928.1) и др., однако функция orf873 и его гомологов в митохондриальном геноме цветковых растений до сих не ясна. Оставшиеся 8 из 34 SNP были выявлены в генах nad4L, nad5, nad6, cob и atp6. Мутации в генах nad5, nad6 не изменение аминокислотной последовательности транслируемых вызывают белков, а в гене *atp6* наоборот две несинонимичные мутации, приводят к заменам 46-ой и 77-ой аминокислот в VI субьединице АТФ-синтазы. Интересно отметить, что несинонимичная мутация Lys46Asn в гене *atp6* характерна для мтДНК трех

ЦМС линий – HA89(PET1), HA89(PET2) и HA89(MAX1), соответственно. В генах *nad4L* и *cob* было выявлено по одной синонимичной и одной несинонимичной мутации (табл. 3.15).

Также в мтДНК ЦМС линии HA89(MAX1) были локализованы 29 INDEL. Среди них 15 делеций (1-5 п.н.) и 14 инсерций (1-10 п.н.) расположены исключительно в межгенных регионах митохондриального генома HA89(MAX1) (приложение 2).

По сравнению с хлДНК в мтДНК НА89(МАХ1) выявлено меньшее число полиморфных сайтов: SSR (в 2,2 раза) и INDEL (в 1,4 раза). При этом абсолютное число SNP в мтДНК больше (в 1,2 раза), чем в хлДНК. Однако, учитывая размер геномов, мы рассчитали частоту SNP, которая составила 0,764 (мтДНК) и 1,298 (хлДНК) SNP на 1 т.п.н. То есть у ЦМС линии подсолнечника НА89(МАХ1) частота SNP в мтДНК (в 1,7 раз) ниже, чем в хлДНК.

Таким образом, в мтДНК ЦМС линии НА89(МАХ1) по сравнению с фертильным аналогом были выявлены следующие изменения структуры: 1 транспозиция (110 т.п.н.), 4 делеции (439, 978, 3183 и 14296 п.н.), 3 инсерции (1999, 5272 и 6583 п.н.), 18 SSR, 230 SNP и 29 INDEL. В результате этих изменений структуры размер митохондриального генома НА89(МАХ1) составил 295586 п.н., что на 5361 п.н. меньше, чем соответствующий показатель фертильной линии НА89. С функциональной точки зрения данные изменения структуры мтДНК привели к делеции гена *orf777* и возникновению 4-х открытых рамок считывания *orf306, orf480, orf645* и *orf1287*. Мы предполагаем, что наиболее вероятной причиной ЦМС типа МАХ1 подсолнечника является возникновение в митохондриальном геноме открытой рамки считывания *orf1287*, кодирующей *аtp6*-химерный белок.

Аннотированный митохондриальный геном ЦМС линии HA89(MAX1) подсолнечника был размешен в банке данных NCBI, его идентификатор - MH704580.1.

3.3.2.4. Митохондриальный геном ЦМС линии HA89(ANN2)

Наибольшее количество перестроек митохондриального генома среди исследованных нами ЦМС линий подсолнечника было обнаружено у HA89(ANN2). В мтДНК ЦМС линии HA89(ANN2) по сравнению с фертильным аналогом нами были выявлены, как крупные реорганизации структуры (более 100 п.н.), представленные транспозициями, делециями и инсерциями, так и незначительные изменения структуры, размером от 1 до 67 п.н. Результат сборки и аннотации митохондриального генома ЦМС линии HA89(ANN2) представлен на рисунке 3.12.

Рисунок 3.12 Генетическая карта митохондриального генома ЦМС линии НА89(ANN2) подсолнечника. Стрелками обозначены направления транскрипции генов мтДНК. Во внутреннем кольце серым и темно серым цветов отображено соотношение АТ и GC нуклеотидных пар

Сравнительный анализ нуклеотидных последовательностей мтДНК ЦМС линии HA89(ANN2) и ее фертильного аналога показал наличие 14 гомологичных областей (табл. 3.16).

Таблица 3.16. Гомологичные области митохондриальной ДНК фертильной линии НА89 и ЦМС линии НА89(ANN2).

№ участ ка	Размер участка, п.н.	Позиции в мтДНК фертильной линии НА89	Позиции в мтДНК ЦМС линии НА89(ANN2)	Ориента ция	Сходст во, %	Локализованные гены
1	29196	1-29196	1-29204	Прямая	99	nad2, trnY, trnN, trnC, ccmC, trnT, atp4, nad4L
2	557	33772-34328	78343-78899	Прямая	99	-
3	1245	34329-35573	148163-149411	Инверт.	98	-
4	77441	36739-114179	217575-295553	Прямая	95	atp8, coxIII, trnV, rpl5, nad4, trnD, trnK, ccmB, rpl10, trnM, trnG, trnQ, trnH, trnE, nad1, coxI, nad5
5	41702	114180-155882	35657-77315	Инверт.	99	atp9, trnM, rps4, rrn26, rrn5, rrn18, rps13
6	4150	155883-160032	300892-305041	Прямая	99	-
7	8584	160320-168903	129358-137946	Прямая	99	nad6*
8	21433	168906-190275	171388-192871	Инверт.	98	nad6*, trnP, trnF, trnS, trnM, ymf16, cob
9	8158	194543-202700	163232-171387	Прямая	99	ccmFc, orf873
10	24687	202701-227387	192915-217574	Инверт.	99	atp1, ccmFn, nad7
11	41505	227396-268900	87945-129446	Прямая	99	rps3, rpl16, trnM, matR, nad3, rps12, nad9, trnW

12	6029	269217-275245	141704-147732	Инверт.	99	atp6*
13	12520	275536-288055	150723-163231	Прямая	99	coxII
14	977	299971-300947	305042-306018	Прямая	99	trnK

*гены, у которых в результате транспозиции изменена структура по сравнению с фертильным аналогом

В результате многочисленных перестроек в мтДНК линии HA89(ANN2) за исключением участков № 1 и № 14, которые представляют фактически одну область кольцевой молекулы мтДНК, все другие участки (№ 2 - № 13) изменили свое расположение в митохондриальном геноме (рис. 3.13). В связи с этим участки № 2 - № 13 в мтДНК HA89(ANN2) мы определили, как транспозиции.

Рисунок 3.13. Схематичное изображение гомологичных участков мтДНК фертильной линии НА89 и ЦМС линии НА89(ANN2). 1 – 29196 п.н; 2 – 557 п.н.; 3 – 1245 п.н.; 4 – 77441 п.н.; 5 – 41702 п.н.; 6 – 4150 п.н.; 7 – 8584 п.н.; 8 – 21433 п.н. 9 – 8158 п.н.; 10 – 24687 п.н.; 11 – 41505 п.н.; 12 – 6029 п.н.; 13 – 12520 п.н.; 14 – 977 п.н.

В большинстве случаев данные транспозиции приводят только к изменению направления транскрипции генов, или их расположения относительно друг друга. Однако, две транспозиции размером 8584 п.н. и 21433 п.н. изменяют структуру гена *nad6*, а транспозиция размером 6029 п.н. - гена *atp6*. Важно отметить, что большинство обнаруженных нами транспозиций в мтДНК HA89(ANN2) сопряжены с другими реорганизациями структуры – делециями и инсерциями.

Также в мтДНК ЦМС линии НА89(ANN2) мы обнаружили 9 крупных (более 100 п.н.) делеций размером 287 п.н., 290 п.н., 299 п.н., 316 п.н., 583 п.н., 1165 п.н., 4204 п.н., 4575 п.н. и 11901 п.н. (табл. 3.17). Несмотря на относительно большое число делеций и значительные размеры некоторых делетируемых участков, данные изменения структуры мтДНК практически не затронули кодирующих областей генома, за исключением 2-х делеций размером 316 п.н. и 1165 п.н., в результате которых элиминируется часть гена *atp6* и полностью ген *orf777* (табл. 3.17). Примечательно, что ген *orf777* также делетирован и у ЦМС линий НА89(РЕТ2) и НА89(МАХ1).

Таблица 3.17. Делеции размером более 100 п.н., выявленные в митохондриальной ДНК ЦМС линии НА89(ANN2).

Размер делетируемого участка, п.н.	Позиции в мтДНК фертильной линии НА89, п.н.	Локализация делеции на генетической карте мтДНК фертильной линии НА89	Гены, входящие в делетируемый участок
287	160032-160319	rps13-nad6	-
290	275246-275535	atp6-coxII	-
299	56701-56999	nad4-ccmB	-
316	268901-269216	nad9-atp6	atp6 (часть гена)
583	70338-70920	rpl10-nad1	-
1165	35574-36738	nad4L-orf777-atp8	orf777
4204	190339-194542	cob-ccmFc	-
4575	29197-33771	nad4L-orf777	-
11901	288070-299970	coxII-nad2	-

Наряду с транспозициями и делециями в мтДНК ЦМС линии HA89(ANN2) были локализованы 7 крупных (более 100 п.н.) инсерций размером 430 п.н., 1027 п.н., 1310 п.н., 3757 п.н., 5338 п.н., 6452 п.н., 9045 п.н. (табл. 3.18).

Таблица 3.18. Инсерции более 100 п.н., выявленные в митохондриальной ДНК ЦМС линии HA89(ANN2).

Размер инсерции, п.н.	Позиции инсерции в мтДНК НА89(ANN2), п.н.	OPC, возникшие в результате инсерции
430	147733-148162	orf1197*
1027	77316-78342	orf324
1310	149412-150722	orf345
3757	137947-141703	
5338	295554-300891	orf558
6452	29205-35656	
9045	78900-87944	orf327, orf933

* ОРС, возникшая в результате нескольких реорганизаций структуры мтДНК

В результате обнаруженных нами реорганизаций структуры мтДНК НА89(ANN2) возникли 7 новых ОРС (табл. 3.19), 5 из которых *orf324, orf327, orf345, orf558, orf933* являются следствием инсерций (табл. 3.18), еще одна *orf891* - двух транспозиций размером 21433 п.н. и 24687 п.н. и последняя *orf1197* – одновременно трех крупных перестроек, делеции размером 316 п.н., инсерции размером 430 п.н. и транспозиции размером 6029 п.н. Проведенный нами анализ транскрипционной активности этих 7-и ОРС свидетельствует, все они за исключением *orf891*, активно экспрессируются только в тканях растений НА89(ANN2).

Таблица 3.19. Открытые рамки считывания, обнаруженные в митохондриальной ДНК ЦМС линии НА89(ANN2).

	Локализация	
OPC	ОРС в мтДНК	Аминокислотная последовательность, кодируемая ОРС
	HA89(ANN2)	
		MKDQLIEGKSESIKMQLYEHRLENLPREKARKRPNRHTNSLSRLPN
orf324	77915-78241	RLAKGGSSYLYESRTRFAAEWNEIHVLGGTSIPWHVGVRKHSHFID
-		SLSPFLIGLGQSFFSP
		MKSYGHIFILRAIELSLASIKPSNYRLYNKLLRAIFSSPNTFNYLTQC
orf327	84497-84826	RRLVLIPFGNSAGGKGLSVSSKFIRPLRMVTGQDWDSQQLSFFSSN
		PYPPQGVPGGLSTSI
		MCLRPLFLVYDYPCSSSDVDIFTWLKVEMCDWLRPGNSFPSRNSS
orf345	149669-150016	RGVKSGGRSGCRGHSISGKEDGLDSLSFMAWAKAALMTFSEDMLI
		RRSQSQSLCSYAFTLSRPSKKDVHN

	205055 206515	MIVLEWLFLTIAPCDAAEPRQLGSQDAATPMMQGIIDFLHPPLLIIIL
orf558		VFVSGVLLLMERRGPHRIASSSSLSVFAGGAGEDPNRGRRRTPVTR
015550	293933-290313	ETITTGISLLRQLILEILVDTPDQALREGLNNPSTQAWNRALESALT
		ERFGHSRYTWGHLWNIVNMVLELSEQGERSPFFLRVIALVRARGT
		MILSVLSSLALVSGLMVVRAKNPVHSVLFPIPVFRNTSGLLLLLGL
		DFFAMIFPVVHIGAIAVSFLFVVMMFHIQIAEIHEEVLRYLPVSGIIG
		LIFWWEMFFILDNESIPLLPTQRNTTSLRYMVYAGKVRSWTNLETL
orf891	192053-192946	GNLLYTYYSVWFLVPSLILLVAMIGAIVLTMHRTTKVKRQDVFRR
, i i i i i i i i i i i i i i i i i i i		NAIDSRRTIMRGMTDLLKESSLILVRIQFVRWPSWSYRCLDTLLFFS
		HFRMTVPFHFWYNFKPGPAIRCISRTPGIRRLLLEYHGIEYKDFKES
		LSYNLNLESFLLHGNSPN
		MRFLFSFLPERFRVLLNAIHNQGSSINDRPPGSVPSSSSVRIPLNTSVI
	82591-83526	VPPTRVGPSGVPLTNEDLPLLSELRRRLQLDVPLSNESLRNAQSALT
		IADS VPENQEN VMGIRY RHDPGRTSFLNFEFEMTNELIRK LTNICNS
orf933		IGIKSSSVPYYIPDLFVYSRFGDGLRSLVHETYDKVLVEILSFYKGRF
v		GRFIILVSLGVSCTVWYTFVPGNPDIALLSDLFPRFETYQSFLNPDT
		YNKFFHKICYIERSYITGEVLKTIENEFPFSELNIPEESGGTRVAVGL
		GLMIGVFLAMGIVPFTDRVPVNLIE
		MINYVLQSMKVTASSSSSGISFPFVLEIVGTPLPGDSFTNRLTASTVS
		IPGYIVDPKIISSLTHFNRLLVDLK YDFLEGRM YPK YIFSLQQQLDN
		TPIESLGKKLDSMRQDELTGLSDYLQSLGYSDQAYLEYLKICDERY
		RDMVVPSPLEQFSILPLIPMKIENLYFSFTNSSLFMLLTLSLVLLLIHF
orf1197	146967-148166	VTKKGGGNLVPNAWQSLVELIYDFVLNLVNEQIGGLSGNVKQKFF
		PCILVTFTFLLFCNLQGMIPYSFTVTSHFLITLGLSFSIFIGITIVGFQR
		NGLHFLSFLLPAGVPLPLAPFLVLLELISYCFRALSLGIRLFANMMA
		GHSLVKILSGFAWTMLCMNDLLYFIGDLGPLFIVLALTGLELGVAI
		LQAYVFTILICIYLNDAINLH

С функциональной точки зрения, особый интерес представляют те ОРС, которые кодирую белки, включающие трансмембранные домены, а именно: *orf558, orf891, orf933, orf1197.* За исключением *orf933*, все остальные ОРС представляют собою химерные последовательности. Например, мембранносвязывающая область белка, кодируемого *orf558,* гомологична II субъединице цитохром с-оксидазы. Более 90 % последовательности orf891 идентичны гену *nad6*, а более половины orf1197–гену *atp6.*

Как было описано ранее, о*rf891* не экспрессируется в мтДНК ЦМС линии HA89(ANN2), и наиболее вероятно является псевдогеном. Вклад других OPC (*orf558*, *orf933*, *orf1197*), кодирующих трансмембранные белки, в формирование ЦМС фенотипа довольно сложно оценить. Согласно литературным данным, *atp6* химерные гены или новые OPC, которые котранскрибируются с геном *atp6*, чаще всего становятся причиной ЦМС фенотипа у цветковых растений (Yamamoto et

al., 2005; Kim, Kim, 2006; Jing et al., 2012; Horn R et al., 2014; Tan et al., 2017). Примечательно, что в случае ЦМС типа МАХ1 подсолнечника нами также локализован *atp6* химерный ген - *orf1287* (раздел 3.3.2.3). В связи с этим мы предполагаем, что и в случае с ЦМС типа ANN2 ключевую роль играет *atp6* модифицированный ген - *orf1197*.

Кроме крупных реорганизаций в митохондриальном геноме ЦМС линии HA89(ANN2) нами были выявлено значительное число вариантных сайтов, а именно: 17 SSR, 288 SNP и 35 INDEL (1-67 п.н.) (приложение 2). Состав полиморфных SSR локусов был следующим: $(T)_n - 58,8 \%$, $(A)_n - 23,5\%$, $(G)_n - 17,7 \%$. Полиморфные SSR локусы (C)_n в мтДНК HA89(ANN2) не обнаружены (табл. 3.20).

Таблица 3.20. Полиморфные SSR локусы митохондриальной ДНК ЦМС линии HA89(ANN2).

Позиция в мтДНК фертильной линии НА89, п.н.	Фертильная линия НА89	HA89(ANN2)	Локализация
3031	(G)5	(G) ₆	MГP nad2-ccmC
3107	(T)5	(T) ₄	MГP nad2-ccmC
7404	(G) ₁₀	(G) ₈	MГP nad2-ccmC
41462	(T)7	(T)8	МГР <i>coxIII-rpl5</i>
51679	(G)10	(G) ₈	MГP nad4-ccmB
56443	(A) ₆	(A)5	MГP nad4-ccmB
56550	(T)5	(T) ₆	MГP nad4-ccmB
85178	(T)8	(T)9	MГР rpl10-nad1
86188	(T)7	(T) ₆	MГР rpl10-nad1
149893	(T)10	(T)9	MГP rps13-nad6
152989	(T)9	(T) ₁₀	MГP rps13-nad6
170187	(T)14	(T)8	MГP nad6-ymf16
178408	(T)9	(T)8	<i>утf16</i> интрон
179735	(A)10	(A)9	MГР ymf16-cob
248268	(A)14	(A) ₁₀	МГР rpl16-matR
260997	(T) ₇	(T) ₈	MГP nad9-atp6
--------	------------------	------------------	---------------
261909	(A) ₈	(A) ₇	MГP nad9-atp6

Больше половины (55,8 %) точковых мутаций в мтДНК ЦМС линии HA89(ANN2) представлены трансверсиями, а именно: G/T - 62 (21,5 %), A/C - 47 (16,3%), C/G - 36 (12,5 %), A/T - 16 (5,5 %). Среди транзиций (44,2 %) обнаружены следующие частоты нуклеотидных замен: C/T - 70 (24,4 %), A/G - 57 (19,8%). 2 из 288 SNP были локализованы в гене рибосомальной PHK (*rrn26*), а 48 SNP – в экзонах белок кодирующих митохондриальных генов (табл. 3.21).

Таблица 3.21. SNP, локализованные в экзонах митохондриальных генов ЦМС линии HA89(ANN2).

Позиция в мтДНК фертильной линии НА89, п.н.	Фертильная линия НА89	HA89(ANN2)	Ген	Тип мугации
36947	А	G	atp8	несинонимичная мутация Asp59Gly
38134	С	А	coxIII	синонимичная мутация
43358	G	Т	rpl5	синонимичная мутация
67110	С	Т	ccmB	синонимичная мутация
107634	Т	G	coxI	синонимичная мутация
122615	А	G	rps4	несинонимичная мутация Lys167Arg
178952	А	С	ymf16	несинонимичная мутация Met161Leu
188296	G	Т	cob	синонимичная мутация
188443	Т	G	cob	синонимичная мутация
188452	G	А	cob	синонимичная мутация
189084	А	G	cob	синонимичная мутация
189619	G	А	cob	несинонимичная мутация Glu427Lys
202282	G	С	orf873	несинонимичная мутация Ala129Gly
202308	С	Т	orf873	синонимичная мутация
202311	Т	С	orf873	синонимичная мутация
202324	G	Т	orf873	несинонимичная мутация Ser115Glu
202325	А	С	orf873	несинонимичная мутация Ser115Glu

202332	С	Т	orf873	несинонимичная мутация Glu112Gly
202333	Т	С	orf873	несинонимичная мутация Glu112Gly
202350	Т	С	orf873	синонимичная мутация
202353	Т	С	orf873	синонимичная мутация
202380	С	G	orf873	несинонимичная мутация Trp96Cys
202441	С	G	orf873	несинонимичная мутация Cys76Ala
202442	А	С	orf873	несинонимичная мутация Cys76Ala
202445	А	G	orf873	синонимичная мутация
202446	С	Т	orf873	синонимичная мутация
202455	G	Т	orf873	синонимичная мутация
202520	Т	С	orf873	несинонимичная мутация Ile50Val
202526	G	Т	orf873	несинонимичная мутация Leu48Ile
202538	Т	А	orf873	несинонимичная мугация Ile44Leu
202539	Т	С	orf873	несинонимичная мутация Ile44Leu
202548	Т	G	orf873	несинонимичная мутация Leu40Phe
202554	С	А	orf873	несинонимичная мутация Leu38Phe
202583	Т	G	orf873	несинонимичная мутация Thr29Pro
202605	С	А	orf873	несинонимичная мутация Met21Ile
202616	Т	G	orf873	несинонимичная мутация Ile18Leu
202620	С	Т	orf873	синонимичная мутация
202628	Т	С	orf873	несинонимичная мутация Trh14Ala
213951	С	Т	ccmFn	синонимичная мутация
214504	С	А	ccmFn	несинонимичная мугация Arg193Leu
214655	С	Т	ccmFn	несинонимичная мутация Ala143Thr
214817	Т	С	ccmFn	несинонимичная мутация Ile91Val
228443	С	Т	rps3	несинонимичная мутация Ala3Val
229032	G	А	rps3	синонимичная мутация
250521	С	Т	matR	синонимичная мутация
251046	G	С	matR	синонимичная мутация
251052	С	Т	matR	синонимичная мутация
251215	G	С	matR	несинонимичная мутация Ala227Gly

В гене *orf*873 у HA89(ANN2) локализованы 26 SNP. Идентичные мутации мы обнаружили и у линии HA89(MAX1) (см. раздел 3.3.2.3). Остальные 22 SNP были локализованы в 11 генах. В генах *rpl5, ccmB, coxI, coxIII* было выявлено только по одной синонимичной мутации, а в генах *atp8, rps4, ymf16* – по одной несинонимичной мутации. Более одного SNP мы обнаружили в генах *rps3, cob, ccmFn* и *matR* (табл.3.21).

Также в митохондриальном геноме HA89(ANN2) было выявлено 35 INDEL (приложение 2) размером 1-67 п.н. Одна инсерция размером 5 нуклеотидов (AAGAA) возникла в гене *orf*873, в результате которой произошел сдвиг рамки считывания и образовался преждевременный стоп кодон. Все остальные 34 INDEL были локализованы в некодирующих участках митохондриального генома HA89(ANN2).

По сравнению с хлДНК в мтДНК НА89(ANN2) выявлено меньшее число SSR (в 2,4 раза) и почти равное - INDEL. При этом абсолютное число SNP в мтДНК больше (в 2 раза), чем в хлДНК. Однако, учитывая размер геномов, мы рассчитали частоту SNP, которая составила 0,96 (мтДНК) и 0,94 (хлДНК) SNP на 1 т.п.н. То есть у ЦМС линии подсолнечника НА89(ANN2) частота SNP в мтДНК равна - в хлДНК.

Таким образом, в мтДНК ЦМС линии НА89(ANN2) по сравнению с фертильным аналогом были выявлены следующие изменения структуры: 12 транспозиций (557, 1245, 4150, 6029, 8158, 8584, 12520, 21433, 24687, 41505, 41702 и 77441 п.н.), 9 делеций (287, 290, 299, 316, 583, 1165, 4204, 4575 и 11901 п.н.), 7 инсерции (430, 1027, 1310, 3757, 5338, 6452 и 9045 п.н.), 17 SSR, 288 SNP и 35 INDEL. В результате этих мутационных изменений размер митохондриального генома HA89(ANN2) составил 306018 п.н., что на 5071 п.н. больше, чем соответствующий показатель фертильной линии HA89. С функциональной точки зрения данные изменению 7-ми открытых рамок считывания: *orf324, orf327, orf345, orf558, orf891, orf933, orf1197*. Мы предполагаем, что наиболее вероятной

причиной ЦМС типа ANN2 подсолнечника является возникновение в митохондриальном геноме открытой рамки считывания *orf1197*, кодирующей *atp6*-химерный белок.

ЗАКЛЮЧЕНИЕ

Для реализации цели и задач настоящего исследования были использованы три уникальные генетические модели. Первая представляет собой однолетние и многолетние виды рода *Helianthus* L из коллекции ВИР. Вторая включает 4 линии культурного и 1 дикорастущего подсолнечника *H. annuus*. Третья представлена фертильным и стерильными аналогами линии НА 89 подсолнечника с различными типами ЦМС (PET1, PET2, ANN2, MAX), полученными на основе однолетних и многолетнего видов рода *Helianthus* L.

Для определения уровня межвидовой изменчивости хлДНК и мтДНК в роде *Helianthus* L. были определены полиморфные сайты в хлоропластных (*atpB*, matKи rbcL) и митохондриальных (atp1, matR, nad5) генов у 5 однолетних и 16 многолетних видов подсолнечника из коллекции ВИР. Количество точковых мутаций (SNP) в изученных генах хлДНК в среднем превышает в 3,6 раз соответствующий показатель в генах мтДНК. Гены, кодирующие субъединицы АТФ-синтазы оказались наиболее консервативными как в хлоропластном (atpB), так и митохондриальном (*atp1*) геномах. Полученные результаты согласуются с данными литературы о скорости эволюционной изменчивости хлоропластных и митохондриальных генов цветковых растений (Drouin et al., 2008; Hoekstra et al., 2017). Также были обнаружены видоспецифичные SNP у *H. strumosus* в генах *rbcL* (хлДНК) и *matR* (мтДНК), у *H. ciliaris* в генах *atpB* (хлДНК) и *matR* (мтДНК). Различия в нуклеотидных последовательностях хлоропластных генов *matK* и *rbcL* позволили кластеризовать однолетние и многолетние виды подсолнечника. В связи с тем, что митохондриальные гены продемонстрировали высокий уровень консерватизма у представителей рода *Helianthus L.*, мы провели анализ некодирующих последовательностей (SSR локусов) митохондриальной ДНК. На основе данных о полиморфизме митохондриальных SSR локусов были определены митотипы для каждого вида подсолнечника и построена кладограмма, отражающая различия между ними.

Анализ нуклеотидных последовательностей хлоропластных и митохондриальных геномов у 4-х линий культурного и 1-ой линии дикорастущего подсолнечника (*H. annuus* L.) позволил оценить спектр и уровень внутривидовой изменчивости. Полиморфизм хлоропластного генома оказался в 5,1 раз выше по сравнению с митохондриальным. Также было отмечено, что дикорастущий подсолнечник значительно отличается от селекционных линий, как по уровню изменчивости хлДНК, так и мтДНК.

В результате сравнительного анализа хлДНК фертильного и стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС (PET1, PET2, ANN2, MAX1) было показано, что размер и структура хлоропластных геномов в целом сходны. Тем не менее, нами локализовано 447 полиморфных сайта, в том числе 57 SSR, 315 SNP и 75 INDEL. 119 из 315 обнаруженных точковых мутаций локализованы в кодирующих участках генов, 58 из которых являются несинонимичными. Только 1 из 75 INDEL был выявлен в кодирующей части хлоропластного генома у ЦМС линии НА89(PET2). Среди аллоплазматических ЦМС линий наибольшее число полиморфных сайтов по сравнению с фертильным аналогом было идентифицировано у ЦМС линии НА89(MAX1), а наименьшее – у ЦМС линии НА89(PET1).

В отличие от хлДНК в мтДНК стерильных аналогов линии НА89 подсолнечника были обнаружены не только малые (<100 п.н.) изменения структуры, но и крупные (>100 п.н.) реорганизации структуры.

Например, в мтДНК ЦМС линии НА89(PET1) по сравнению с фертильным аналогом были выявлены следующие изменений: 1 инверсия (11852 п.н.), 1 инсерция (4732 п.н.), 1 делеция (451 п.н.), 8 SSR, 7 SNP и 2 INDEL. В результате этих изменений структуры размер митохондриального генома НА89(PET1) составил 305217 п.н., что превышает на 4270 п.н. соответствующий показатель фертильной линии. Реорганизации структуры мтДНК привели к возникновению у НА89(PET1) 2-х открытых рамок считывания *orf306* и *orfH522*.

В мтДНК ЦМС линии НА89(РЕТ2) были выявлены 2 транспозиции (27,5 и 106,5 т.п.н.), 2 делеции (711 и 3780 п.н.), 2 инсерции (5050 и 15885 п.н.), 14 SSR,

55 SNP и 13 INDEL. В результате этих изменений размер митохондриального генома HA89(PET2) составил 316582 п.н., что на 15637 п.н. превышает соответствующий показатель фертильной линии. Реорганизации структуры мтДНК у HA89(PET2) привели к делеции гена *orf777*, дупликации гена *atp6* и возникновению 4-х открытых рамок считывания: *orf228*, *orf285*, *orf645* и *orf2565*.

В мтДНК ЦМС линии НА89(МАХ1) были локализованы 1 транспозиция (110 т.п.н.), 4 делеции (439, 978, 3183 и 14296 п.н.), 3 инсерции (1999, 5272 и 6583 п.н.), 18 SSR, 230 SNP и 29 INDEL. В результате этих изменений размер митохондриального генома НА89(МАХ1) составил 295586 п.н., что на 5631 п.н. меньше, чем соответствующий показатель фертильной линии. Реорганизации структуры мтДНК у НА89(МАХ1) привели к делеции гена *orf777* и возникновению 4-х открытых рамок считывания *orf306, orf480, orf645* и *orf1287*.

В мтДНК ЦМС линии HA89(ANN2) локализованы 12 транспозиций (557, 1245, 4150, 6029, 8158, 8584, 12520, 21433, 24687, 41505, 41702 и 77441 п.н.), 9 делеций (287, 290, 299, 316, 583, 1165, 4204, 4575 и 11901 п.н.), 7 инсерции (430, 1027, 1310, 3757, 5338, 6452 и 9045 п.н.), 17 SSR, 288 SNP и 35 INDEL. В результате этих мутационных изменений размер митохондриального генома 5071 HA89(ANN2) составил 306018 п.н., что на П.Н. больше, чем соответствующий показатель фертильной линии. Реорганизации структуры мтДНК у HA89(ANN2) привели к делеции генов orf777, nad6, atp6 и возникновению 7-ми открытых рамок считывания: orf324, orf327, orf345, orf558, orf891, orf933, orf1197.

Проведенный нами биоинформатический анализ полипептидов, кодируемыми активно транскрибирующимися открытыми рамками считывания, возникшими в результате реорганизаций мтДНК позволяет предположить, что ЦМС типа PET2 непосредственно связана с *atp9*-химерными генами *orf228* и *orf285*, ЦМС типа MAX1 – с *atp6*-химерным геном *orf1287*, ЦМС типа ANN2 - с *atp6*-химерным геном orf1197.

выводы

1. Изучен полиморфизм хлоропластных (*atpB*, *matK u rbcL*) и митохондриальных (*atp1*, *matR*, *nad5*) генов у представителей 5 однолетних и 16 многолетних видов рода *Helianthus* L. из коллекции ВИР. Количество точковых мутаций (SNP) в изученных генах хлДНК в среднем превышает в 3,6 раз соответствующий показатель в генах мтДНК. Выявлены специфичные SNP: у *H. strumosus* в генах *rbcL* (хлДНК) и *matR* (мтДНК), у *H. ciliaris* в генах *atpB* (хлДНК) и *matR* (мтДНК).

2. Получены и проанализированы полные нуклеотидные последовательности хлДНК и мтДНК линий НА89 и 3629 культурного и линии 398941 дикорастущего подсолнечника (*H. annuus*). Уровень изменчивости, детектируемый по числу SSR, SNP и INDEL полиморфных сайтов, оказался в 5,1 раз выше в хлДНК, чем в мтДНК. Дикорастущий подсолнечник (*H. annuus*) значительно отличается от селекционных линий по уровню изменчивости как хлДНК, так и мтДНК.

3. Сравнительный анализ хлоропластных геномов фертильной линии HA89 и ее стерильных аналогов HA89(PET1), HA89(PET2), HA89(ANN2), HA89(MAX1) позволил локализовать 447 полиморфных сайта, в том числе 57 SSR, 315 SNP и 75 INDEL. 119 из 315 SNP обнаружены в кодирующих участках генов, при этом 58 SNP приводят к изменению аминокислотных последовательностей кодируемых белков. Среди стерильных аналогов наибольшее число полиморфных сайтов (246) в сравнении с фертильной линией идентифицировано у HA89(MAX1), а наименьшее (49) – у HA89(PET1).

4. Сравнительный анализ митохондриальных геномов фертильной линии HA89 и ее стерильных аналогов HA89(PET1), HA89(PET2), HA89(ANN2), HA89(MAX1) позволил локализовать крупные реорганизации геномов, в том числе 1 инверсию, 12 инсерций, 15 транспозиций и 16 делеций, а также 560 полиморфных сайтов, в том числе 33 SSR, 463 SNP и 64 INDEL. Размер

митохондриальных геномов аллоплазматических линий с различными типами ЦМС значительно отличался по сравнению с фертильным аналогом. Изменения структуры мтДНК привели к возникновению новых открытых рамок с читывания: *orf228, orf285, orf306, orf324, orf327, orf345, orf480, orfH522, orf558 orf645, orf891, orf933, orf1197, orf1287, orf2565*. Среди стерильных аналогов наибольшее число изменений структуры мтДНК идентифицировано у HA89(ANN2), а наименьшее– у HA89(PET1).

5. Биоинформатический анализ полипептидов, кодируемыми активно транскрибирующимися открытыми рамками считывания, возникшими в результате реорганизаций мтДНК позволяет предположить, что ЦМС типа РЕТ2 непосредственно связана с *atp9*-химерными генами *orf228* и *orf285*, ЦМС типа МАХ1 – с *atp6*-химерным геном *orf1287*, ЦМС типа ANN2 - с *atp6*-химерным геном *orf1197*.

Список сокращений

ВИР – Всероссийский институт генетических ресурсов растений имени Н.И. Вавилова

МГР – межгенный регион

мтДНК – митохондриальная ДНК

ОРС – открытая рамка считывания

п.н. – пара нуклеотидов

ПЦР – полимеразная цепная реакция

РБФК/О – рибулозобисфосфаткарбоксилаза- оксигеназа

т.н.п. – тысяча пар нуклеотидов

хлДНК – хлоропластная ДНК

ЦМС – цитоплазматическая мужская стерильность

BLAST – basic local alignment search tool – программа для локального выравнивания нуклеотидных последовательностей

GenBank – международная база данных нуклеотидных последовательностей (http://www.ncbi.nlm.nih.gov)

INDEL – insertion or deletion – инсерции или делеция одного или нескольких нуклеотидов.

IR – inverted repeat – инвертированный повторяющихся регион

LSC – large single copy region – большой однокопийный регион

PIC – polymorphism information content – величина информационного полиморфизма

SNP – single nucleotide polymorphism – однонуклеотидный полиморфизм

SSC – small single copy region – малый однокопийный регион

SSR – simple sequence repeats - простые повторяющиеся последовательности

Список использованной литературы

1. Анащенко, А. В. Современные вопросы прикладной ботаники, генетики и селекции подсолнечника / А. В. Анащенко // Научно-технический бюллетень ВНИИ растениеводства. – 1977. – №. 69. – С. 47-51.

Анащенко, А. В. Филогенетические связи в роде *Helianthus* L / A. В.
 Анащенко // Труды по прикладной ботанике, генетике и селекции. – 1979. – Т. 64.
 – №. 2. – С. 146-156.

3. Анисимова, И. Н. Некоторые вопросы геномного анализа рода *Helianthus* L. / И. Н. Анисимова, А. В. Анащенко, И. П. Гаврилюк // Вестник с.-х. науки. – 1982. – № 3. – С. 98-104.

4. Анисимова, И. Н. Цитоплазматическая мужская стерильность и перспективы ее использования в селекционно-генетических исследованиях и семеноводстве картофеля / И.Н. Анисимова, Т.А. Гавриленко // Вавиловский журнал генетики и селекции. – 2017. –Т. 21. – № 1. – С. 83-95.

5. Брагин, А. Г. Анализ гетероплазматического состояния митохондриальной ДНК фертильных и мужскостерильных растений сахарной свеклы (*Beta vulgaris*) / А. Г. Брагин, М. К. Иванов, Л. А. Федосеева, Г. М. Дымшиц // Вавиловский журнал генетики и селекции. – 2011. – Т. 15. – № 3. – С. 524-530.

6. Гаврилова, В.А. Подсолнечник / В. А. Гаврилова, И. Н. Анисимова – СПб: ВИР, 2003. – 209 с.

 Даниленко, Н. Г. Миры геномов органелл / Н. Г. Даниленко, О. Г. Давыденко – Минск: Тэхналогія, 2003. – 494 с.

 Матвеева, Т. В. Молекулярные маркеры для видоидентификации и филогенетики растений / Т. В. Матвеева, О. А. Павлова, Д. И. Богомаз, А. Е. Демкович, Л. А. Лутова // Экологическая генетика. – 2011 – Том 9. – № 1. – С. 32-43.

9. Синявская, М. Г. Экспрессия хлоропластного генома: современные представления и экспериментальные пути изучения / М. Г. Синявская, Н. Г. Даниленко, Н. В. Луханина, А. М. Шимкевич, О. Г. Давыденко // Вавиловский журнал генетики и селекции. – 2015. – Том 19. – № 5. – С. 511-528.

 Чесноков, Ю. В. Оценка меры информационного полиморфизма генетического разнообразия / Ю. В. Чесноков, А.М. Артемьева // Сельскохозяйственная биология. – 2015. – Том 50. – № 5. – С. 571-578.

11. Allen, J. O. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize / J. O. Allen, C. M. Fauron, P. Minx et al. // Genetics. $-2007. - Vol. 177. - N_{\odot} 2. - P. 1173-1192.$

12. Allen, J. F. A structural phylogenetic map for chloroplast photosynthesis /
J. F. Allen, W. B. M. de Paula, S. Puthiyaveetil, J. Nield // Trends in plant science. –
2011. – Vol. 16. – № 12. – P. 645-655.

13. Alverson, A. J. Insights into the evolution of mitochondrial genome size from complete sequences of *Citrullus lanatus* and *Cucurbita pepo (Cucurbitaceae)* / A. J. Alverson, X. Wei, D. W. Rice, D. B Stern, K. Barry, J. D. Palmer // Molecular biology and evolution. $-2010. - Vol. 27. - N_{2} 6. - P. 1436-1448.$

14. Alverson, A. J. Origins and Recombination of the Bacterial-Sized Multichromosomal Mitochondrial Genome of Cucumber / A. J. Alverson, D. W. Rice, S. Dickinson, K. Barry, J. D. Palmer // The Plant Cell. $-2011. - Vol. 23. - N_{2} 7. - P.$ 2499-2513.

15. Ardila, F. Structural features of a cytoplasmic male sterility source from *Helianthus resinosus*, CMS RES1 / F. Ardila, M. M. Echeverria, R. Rios, R. H. Rodriguez // Journal of Plant Breeding and Crop Science. – 2010. – Vol. 2 – N 7. – P. 168-172.

Bailey-Serres, J. Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene in sorghum / J. Bailey-Serres, D. K. Hanson, T. D. Fox, C. J. Leaver // Cell. – 1986. – Vol. 47. – № 4. – P. 567-576.

17. Bendich, A. J. Why do chloroplasts and mitochondria contain so many copies of their genome? / A. J. Bendich // BioEssays. – 1987. – Vol. 6. – P. 279-282.

18. Bock, D. G. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke / D. G. Bock, N. C. Kane, D. P. Ebert, L. H. Rieseberg // New Phytologist. – 2014. – Vol. 201. – N_{2} 3. – P. 1021-1030.

 Bock, R. Cell and Molecular Biology of Plastids / R. Bock – Heidelberg, Germany: Springer-Verlag, 2007. – 534 p.

20. Bolger, A. M. Trimmomatic: A flexible trimmer for Illumina sequence data
/ A. M. Bolger, M. Lohse, B. Usadel // Bioinformatics. – 2014. – Vol. 30. – № 15. – P.
2114-2120.

Borner, T. Chloroplast RNA polymerases: Role in chloroplast biogenesis /
T. Borner, A. Y. Aleynikova, Y. O. Zubo, V. V. Kusnetsov // Biochimica et biophysica acta. – 2015. – Vol. 1847. – № 9. – P. 761-769.

22. Chumley, T. W. The complete chloroplast genome sequence of Pelargonium x hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants / T. W. Chumley, J. D. Palmer, J. P. Mower, H. M. Fourcade, P. J. Calie, J. L. Boore, R. K. // Jansen Molecular Biology and Evolution. -2006. - Vol. 23. - N $_{2}$ 11. - P. 2175-2219.

23. Daniel, H. Molecular biology and biotechnology of plant organelles / H.Daniel, C. Chase – Dordrecht, The Netherlands: Springer, 2004. – 659 p.

24. Davila, J. I. Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. / J. I. Davila, M.P. Arrieta-Montiel, Y. Wamboldt, J. Cao, J. Hagmann, V. Shedge, Y. Z. Xu, D. Weigel, S.A. Mackenzie // BMC biology. – 2011. – Vol. 9. – № 1. – Режим доступа: http://dx.doi.org/10.1186/1741-7007-9-64.

25. Dewey, R. E. A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize / R. E. Dewey, D. H. Timothy, C. S Levings // Proceedings of the National Academy of Sciences of the United States of America. – 1987. – Vol. 84. – N_{2} 15. – P. 5374–5378.

26. Dieterich, J. H. Alloplasmic male sterility in *Brassica napus* (CMS "Tournefortii-Stiewe") is associated with a special gene arrangement around a novel

atp9 gene / J. H. Dieterich, H. P. Braun, U. K. Schmitz // Molecular genetics and genomics. -2003. -Vol. 269. $-N_{2} 6$. -P. 723-731.

27. Doorduin, L. The Complete Chloroplast Genome of 17 Individuals of Pest Species *Jacobaea vulgaris*: SNPs, Microsatellites and Barcoding Markers for Population and Phylogenetic Studies / L. Doorduin, B. Gravendeel, Y. Lammers, Y. Ariyurek, T. Chin-A-Woeng, K. Vrieling // DNA Research. – 2011. – Vol. 18. – P. 93–105.

28. Drouin, G. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants / G. Drouin, H. Daoud, J Xia // Molecular Phylogenetics and Evolution. $-2008. - Vol. 49. - N_{\odot} 3. - P. 827-831.$

29. Galardini, M. CONTIGuator: a bacterial genome finishing tool for structural insights on draft genomes. / M. Galardini, E.G. Biondi, M. Bazzicalupo, A. Mengoni // Source Code for Biology and Medicine. $-2011. - Vol. 6. - N_{2} 11. - P. 11.$

30. Gillman, J. D. The petunia restorer of fertility protein is part of a large mitochondrial complex that interacts with transcripts of the CMS-associated locus / J.D. Gillman, S. Bentolila, M. R. Hanson // The Plant Journal. – 2007. – Vol. 49. – N_{2} 2. – P. 217–227.

31. Gray, M. W. RNA Editing in Plant Mitochondria / M. W. Gray // IUBMB Life. – 2009. – Vol. 61. – № 12. – P. 1101-1104.

32. Gualberto, J.M. The plant mitochondrial genome: Dynamics and maintenance / J. M. Gualberto, D. Mileshina, C. Wallet, A. K. Niazi, F. Weber-Lotfi, A. Dietrich // Biochimie. -2014. - Vol. 100. - No 1. - P. 107-120.

33. Gurevich, A. QUAST: quality assessment tool for genome assemblies / A.
Gurevich, V. Saveliev, N. Vyahhi, G. Tesler // Bioinformatics. – 2013. – Vol. 29 – № 8.
– P. 1072-1075.

34. Gutierres, S. Lack of mitochondrial and nuclear-encoded subunits of complex I and alteration of the respiratory chain in Nicotiana sylvestris mitochondrial deletion mutants / S. Gutierres, M. Sabar, C. Lelandais et al. // Proceedings of the National Academy of Sciences of the United States of America. – 1997. – Vol. 94. – \mathbb{N}° 7. – P. 3436-3441.

35. Handa, H. Linear plasmids in plant mitochondria: peaceful coexistences or malicious invasions? / H. Handa // Mitochondrion. -2008. - Vol. 8. - No 1. - P. 15-25.

36. Hanson, M. R. Interactions of mitochondrial and nuclear genes that affect male gametophyte development / M. R. Hanson, S. Bentolila // The Plant Cell. – 2004.
– Vol. 16. – P. 154-169.

37. Heiser, C.B. Sunflowers, weeds, and cultivated plants / C.B. Heiser // The genetics of colonizing species. Academic Press, New York. – 1965. – P. 375-386.

38. Heiser, C.B. The North American sunflowers (*Helianthus*) / C.B. Heiser, D.M. Smith, S.B. Clevenger, C. Martin // Memoirs of the Torrey Botanical Club. – 1969. – Vol. $22 - N_{\odot} 3. - P. 1-218.$

39. Hoekstra, P. H. Correlated evolutionary rates across genomic compartments in *Annonaceae* / P. H. Hoekstra, J. J. Wieringa, E. Smets, R. D. Brandao, J. C. Lopes, R. H. J. Erkens, L. W. Chatrou // Molecular phylogenetics and evolution. – 2017 – Vol. 114. – P. 63-72.

40. Horn, R. The CMS-associated 16 kDa protein encoded by orfH522 in the PET1 cytoplasm is also present in other male-sterile cytoplasms of sunflower / R. Horn, J. E.G. Hustedt, A. Horstmeyer, J. Hahnen, K. Zetsche. W. Friedt // Plant molecular biology. – 1996. – Vol. 30. – N_{2} 3. – P. 523-538.

41. Horn, R. Molecular diversity of male sterility inducing and male-fertile cytoplasms in the genus *Helianthus* / R. Horn // Theoretical and applied genetics. – 2002. – Vol. 104. – N $_{2}$ 4. – P. 562–570.

42. Horn, R. Mitochondrion role in molecular basis of cytoplasmic male sterility / R. Horn, K. J. Gupta, N. Colombo // Mitochondrion. – 2014. – Vol. 19 – P. 198-205.

43. Hu, J. Mitochondria and cytoplasmicmale sterility in plants / J. Hu, W. Huang, Q. Huang X. Qin, C. Yu, L. Wang, S. Li, R. Zhu, Y. Zhu // Mitochondrion. – 2014. – Vol. 19. – P. 282–288.

44. Igarashi, K. Whole genomic sequencing of RT98 mitochondria derived from *Oryza rufipogon* and northern blot analysis to uncover a cytoplasmic male

sterility-associated gene / K. Igarashi, T. Kazama, K. Motomura, K. Toriyama // Plant and cell physiology. -2013. - Vol. 54. - No 2. - P. 237-243.

45. Jansen, R.K. Phylogenetic analyses of *Vitis (Vitaceae)* based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids / R. K. Jansen, C. Kaittanis, C. Saski, S.B Lee, J. Tomkins, A.J. Alverson, H. Daniell // BMC evolutionary biology. – 2006 – Vol 6. – Режим доступа: http://dx.doi.org/10.1186/1471-2148-6-32.

46. Jiang, W. A comparative study of ATPase subunit 9 (atp9) gene between cytoplasmic male sterile line and its maintainer line in soybeans / W. Jiang, S. Yang, D. Yu, J. Gai // The African Journal of Biotechnology. – 2011. – Vol. 10. – P. 10387-10392.

47. Jing, B. A male sterility-associated cytotoxic protein ORF288 in *Brassica juncea* causes aborted pollen development / B. Jing, S. Heng, D. Tong et al. // Journal of Experimental Botany. -2012. -Vol. 63. $-N_{2} 3$. -P. 1285-1295.

48. Chen, L. Male Sterility and Fertility Restoration in Crops / L. Chen, Y.G.
Liu // Annual Review of Plant Biology. – 2014. – Vol. 65. – P. 579-606.

49. Chun, E. H. L. The isolation and characterization of DNA associated with chloroplast preparations / E. H. L. Chun, M. H. Vaugham, A. Rich // Journal of Molecular Biology. – 1963. – Vol. 7. – P. 130-141.

50. Kahlau, S. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes / S. Kahlau, S. Aspinall, J. C. Gray, R. Bock // Journal of molecular evolution. -2006. - Vol. 63. - No 2. - P. 194-207.

51. Kane, N.C. Sunflower genetic, genomic and ecological resources / N.C.
Kane, J. M. Burke, L. Marek et al. // Molecular Ecology Resources. – 2013. – Vol. 13. – № 1. – Р. 10-20.

52. Khakhlova, O. Elimination of deleterious mutations in plastid genomes by gene conversion / O. Khakhlova, R. Bock // Plant journal. – 2006. – Vol 46. – № 1. – P. 85-94.

53. Kim, D. H. The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper (*Capsicum annuum* L.) / D. H. Kim, B. D. Kim // Current Genetics. – 2006. – Vol. 49. – P. 59–67.

54. Klodmann, J. Internal Architecture of Mitochondrial Complex I from *Arabidopsis thaliana* / J. Klodmann, S. Sunderhaus, M. Nimtz, L. Jansch, H.P. Braun // Plant Cell. $-2010. - Vol. 22. - N_{\odot} 3. - P. 797-810.$

55. Knoop, V. The mitochondrial DNA of land plants: peculiarities in phylogenetic Perspective / V. Knoop // Current Genetics. – 2004. – Vol. 46. – P. 123-139.

56. Kohler, R. H. Cytoplasmic male sterility in sunflower is correlated with the co-transcription of a new open reading frame with the atpA gene / R. H. Kohler, R. Horn, A. Lossl, K. Zetsche // Molecular genetics and genomics. – 1991. – Vol. 227. – P. 369-376.

57. Krupinska, K. New insights into plastid nucleoid structure and functionality / K. Krupinska, J. Melonek, K. Krause // Planta. – 2013. – Vol. 237. – № 3. – P. 653-664.

58. Kubo, T. Male Sterility-Inducing Mitochondrial Genomes: How Do They Differ? / T. Kubo, K. Kitazaki, M. Matsunaga, H. Kagami, T. Mikami. Critical Reviews in Plant Sciences. – 2011. – Vol. 30. – № 4. – P. 378-400.

59. Kumar, R.A. Changes in DNA damage, molecular integrity, and copy number for plastid DNA and mitochondrial DNA during maize development / R.A. Kumar, D.J. Oldenburg, A.J. Bendich // Journal of Experimental Botany. – 2014. – Vol. $65. - N_{2} 22. - P. 6425-6439.$

60. Langmead, B. Fast gapped-read alignment with Bowtie 2 / B. Langmead,
S. Salzberg // Nature methods. - 2012. - Vol. 9. - № 4. - P.357-359.

61. Leclerq, P. Une sterilite cytoplasmique chez le tournesol / P. Leclerq // Ann Amelior Plant. – 1969. – Vol. 19. – P. 99–106.

62. Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data / H. Li // Bioinformatics. – 2011. – Vol. 27. – № 21. – P. 2987-2993.

63. Liao, X. Complete sequence of kenaf (*Hibiscus cannabinus*) mitochondrial genome and comparative analysis with the mitochondrial genomes of other plants / X. Liao, Y. Zhao, X. Kong, et al. // Scientific reports. – 2018. – Vol. 8. – № 1 – Режим доступа: http://dx.doi.org/10.1038/s41598-018-30297-w.

64. Liu, H. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line / H. Liu, P. Cui, K. Zhan, et al. // BMC Genomics. – 2011. – Vol. 12. – Режим доступа: http://dx.doi.org/10.1186/1471-2164-12-163.

65. Lohse, M. Organellar Genome Draw (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. / M. Lohse, O. Drechsel, R. Bock. // Current Genetics. – 2007. – Vol. 52. – P. 267-274.

66. Ma, J. Organellar genome copy number variation and integrity during moderate maturation of roots and leaves of maize seedlings. / J. Ma, X.Q. Li // Current genetics. -2015. - Vol. 61. - No 4. - P. 591-600.

67. Maier, R.M. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing / R.M Maier, K. Neckermann, G. L. Igloi, H. Kössel // Journal of molecular biology. $-1995. - Vol. 251. - N_{\odot} 5. - P. 614-628.$

68. Makarenko, M.S. Comparative Genomics of Domesticated and Wild Sunflower: Complete Chloroplast and Mitochondrial Genomes / M.S. Makarenko, A.V. Usatov, N.V. Markin, K.V. Azarin, O.F. Gorbachenko, N.A. Usatov // OnLine Journal of Biological Sciences. – 2016. – Vol. 16. – N_{2} 1. – P. 71-75.

69. Makarenko, M. S. Mitochondrial genomes organization in alloplasmic lines of sunflower (*Helianthus annuus* L.) with various types of cytoplasmic male sterility / M. S. Makarenko, I. V. Kornienko, K. V. Azarin, A. V. Usatov, M. D. Logacheva, N. V. Markin, V. A. Gavrilova // PeerJ. – 2018. – Vol. 6. – Режим доступа: http://dx.doi.org/10.7717/peerj.5266.

70. Marechal, A Recombination and the maintenance of plant organelle genome stability / A. Marechal, N. Brisson // New Phytologist. $-2010 - Vol. 186. - N \ge 2. - P. 299-317.$

71. Mason, C. M. How Old Are Sunflowers? A Molecular Clock Analysis of Key Divergences in the Origin and Diversification of *Helianthus* (*Asteraceae*) / C. M. Mason // International Journal of Plant Sciences. – Vol. 179. – N_{2} 3. – P. 182-191.

72. Millar, A. H. Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits / A. H. Millar, H. Eubel, L. Jansch, V. Kruft, J. L. Heazlewood, H. P. Braun // Plant molecular biology. – 2004. – Vol. 56. – N_{2} 1. – P. 77-90.

73. Miller, J.F. Inheritance of restoration of *Helianthus petiolaris sp. fallax* (PEF1) cytoplasmic male sterility / J.F. Miller // Crop Science. – 1996. – Vol. 36. – P. 83-86.

74. Morley, S.A. Plant mitochondrial DNA / S.A. Morley, B.L. Nielsen // Frontiers in Bioscience. $-2017. - Vol. 22. - N \ge 1. - P. 1023-1032.$

75. Mower, J. P. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants / J. P Mower, P. Touzet, J. S. Gummow, L. F. Delph, J. D. Palmer // BMC Evolutionary Biology. – 2007. –Vol. 7. – Режим доступа: http://dx.doi.org/10.1186/1471-2148-7-135.

76. Ni, L. H. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion / L. H. Ni, Z. L. Zhao, H. X. Xu, S. L. Chen, G. Dorje. // Gene. – 2016. - Vol. 577. – P. 281–288.

77. Nurk, S. Assembling Genomes and Mini-metagenomes from Highly Chimeric Reads. Research in Computational Molecular Biology / S. Nurk, A. Bankevich, D. Antipov et al. // Lecture Notes in Computer Science. – 2013. – Vol. 7821. – P. 158-170.

78. Ogihara, Y. Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA / Y. Ogihara, K. Isono, T. Kojima, et al. // Molecular genetics and genomics. -2002. - Vol. 266. - No 5. - P. 740-746.

79. Ogihara, Y. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome / Y. Ogihara, Y. Yamazaki, K. Murai et al. // Nucleic acids research. -2005. - Vol. 33. - N $_{2}$ 19. - P. 6235-6250.

80. Oldenburg, D.J. The amount and integrity of mtDNA in maize decline with development / D.J. Oldenburg, R.A. Kumar, A.J. Bendich // Planta. -2013. - Vol. 237. $- N_{2} 2$. - P. 603-617.

81. Oshima, M. The identification of quantitative trait loci that control the paternal inheritance of a mitochondrial plasmid in rapeseed (*Brassica napus* L.) / M. Oshima, H. Handa // Genes and genetic systems. -2012. -Vol. 87. $-N_{\odot} 1$. -P. 19-27.

82. Park, J. Y. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (*Raphanus sativus* L.) containing DCGMS cytoplasm / J. Y. Park, Y. P. Lee, J. Lee, B. S. Choi, S. Kim, T. J. Yang // Theoretical and applied genetics. – 2013 – Vol. 126. – № 7. – P. 1763-1774.

83. Parks, M. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes / M. Parks, R. Cronn, A. Liston // BMC Biology. – 2009. – Vol. 7. – Режим доступа: http://dx.doi.org/ 10.1186/1741-7007-7-84.

84. Patwardhan, A. Molecular Markers in Phylogenetic Studies-A Review / A. Patwardhan, S. Ray, A. Roy // Journal of Phylogenetics and Evolutionary Biology. – 2014. – Vol. 2. – Режим доступа: http://dx.doi.org/10.4172/2329-9002.1000131.

85. Perry, A. S. Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat / A. S. Perry, K. H. Wolfe // Journal of molecular evolution. -2002. - Vol. 55. - N $_{2}$ 5. - P. 501-508.

86. Plader, W. The complete structure of the cucumber (*Cucumis sativus* L.) chloroplast genome: its composition and comparative analysis / W. Plader, Y. Yukawa, M. Sugiura, S. Malepszy // Cellular and molecular biology letters. – 2007. – Vol. 12. № 4. – P. 584-594.

87. Popov, V.N. Succinate dehydrogenase in *Arabidopsis thaliana* is regulated by light via phytochrome A. / V. N. Popov, A. T. Eprintsev, D. N. Fedorin, A. U. Igamberdiev // FEBS Letters. $-2010. - Vol. 584. - N_{2} 1. - P. 199-202.$

88. Preuten, T. Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells / T. Preuten, E. Cincu, J. Fuchs, R. Zoschke, K. Liere, T. Borner // Plant journal. $-2010. - Vol. 64. - N_{\odot} 6 - P. 948-959.$

89. Qiu, Y. L. Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes / Y. L. Qiu, L. Li, T. A. Hendry et al. // Taxon. – Vol. 55. – No. 4. – P. 837-856.

90. Reddemann, A. Recombination Events Involving the atp9 Gene Are Associated with Male Sterility of CMS PET2 in Sunflower / A. Reddemann, R. Horn // International journal of molecular sciences. – 2018. – Vol. 19. – № 3. – Режим доступа: http://dx.doi.org/10.3390/ijms19030806.

91. Rieseberg, L.H. Differential cytoplasmic versus nuclear introgression in *Helianthus* / L.H. Rieseberg, H.C. Choi, D. Ham // Journal of Heredity. – 1991. – Vol. 82(6). – P. 489-493.

92. Robison, M. M. A mitochondrial plasmid and plasmid-like RNA and DNA polymerases encoded within the mitochondrial genome of carrot (*Daucus carota* L.) / M. M. Robinson, D. J. Wolyn // Current genetics. – 2005. – Vol. 47. – № 1. – P. 57-66.

93. Rodriguez-Moreno, L. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. / L. Rodriguez-Moreno, V. M. Gonzalez, A. Benjak, M. C. Marti, P. Puigdomenech, M. A. Aranda, J. Garcia-Mas // BMC Genomics. – 2011. – Vol. 7. – Режим доступа: http://dx.doi.org/10.1186/1471-2164-12-424.

94. Saarela, J.M. Plastid phylogenomics of the cool-season grass subfamily: clarification of relationships among early-diverging tribes / J. M. Saarela, W. P. Wysocki, C. F. Barrett, R. J. Soreng, J. I. Davis, L. G. Clark, S. A. Kelchner, J. C. Pires, P. P. Edger, D. R. Mayfield, M. R. Duvall // AoB Plants. – 2015 – Vol. 7. – Режим доступа: http://dx.doi.org/10.1093/aobpla/plv046.

95. Sager, R. Chloroplast genetics of Chlamydomonas. II. Mapping by cosegregation frequency analysis / R. Sager, Z. Ramanis // Genetics. – 1976 – Vol. 83 – P. 323-340.

96. Samigullin, T. H. Complete Plastid Genome of the Recent Holoparasite Lathraea squamaria Reveals Earliest Stages of Plastome Reduction in Orobanchaceae / T. H. Samigullin, M. D. Logacheva, A. A. Penin, C. M. Vallejo-Roman // PLoS One. – 2016. – Vol. 11. – Режим доступа: http://dx.doi.org/10.1371/journal.pone.0150718.

97. Saski, C. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes / C. Saski, S. B. Lee, S. Fjellheim, C. Guda, R. K. Jansen, H. Luo, J. Tomkins, O. A. Rognli, H. Daniell, J. L. Clarke. // Theoretical and applied genetics. – 2007. – Vol. 115. – № 4. – P. 571-590.

98. Sato, S. Complete structure of the chloroplast genome of Arabidopsis thaliana / S. Sato, Y. Nakamura, T. Kaneko, E. Asamizu, S. Tabata // DNA research. – 1999. – Vol. $6 - N_{2} 5$. – P. 283-290.

99. Saski, C. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes / C. Saski, S. B. Lee, H. Daniell, T. C. Wood, J. Tomkins, H. G. Kim, R. K. Jansen // Plant molecular biology. – 2005. – Vol 59. – № 2. – P. 309-322.

100. Sazanov, L. A Structural Perspective on Respiratory Complex I: Structure and Function of NADH:ubiquinone oxidoreductase / L. Sazanov – Dordrecht, The Netherlands: Springer, 2012. – 286 p.

101. Schilling, E.E. Infrageneric classification of *Helianthus (Compositae)* /
E.E. Schilling, C.B. Heiser // Taxon. – 1981. – Vol. 30 – № 2. – P. 393-403.

102. Serieys, H. A. Identification, study and utilization in breeding programs of new CMS / H. A. Serieys // Helia. – 1996 – Vol. 19. – P.144-160.

103. Shen, X. Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant *Artemisia annua* / X. Shen, M. Wu, B. Liao et al. // Molecules. – 2017. – Vol. 22. – Режим доступа: http://dx.doi.org/10.3390/molecules22081330.

Sloan, D. B. Rapid evolution of enormous, multichromosomal genomes in 104. flowering plant mitochondria with exceptionally high mutation rates / D. B. Sloan, A. J. Alverson, J. P. Chuckalovcak, M. Wu, D. E. McCauley, J. D. Palmer, D. R. Taylor // biology. 10. № PLoS _ 2012. – Vol. _ 1. _ Режим доступа: http://dx.doi.org/10.1371/journal.pbio.1001241.

105. Sloan, D. B. One ring to rule them all? Genome sequencing provides new insights into the «master circle» model of plant mitochondrial DNA structure / D. B. Sloan // New Phytologist. -2013. -Vol. 200. $-N_{2}4$. -P. 978-985.

106. Sloan, D. B. Correction of Persistent Errors in Arabidopsis Reference Mitochondrial Genomes / D. B. Sloan, Z. Wu, J. Sharbrough // Plant Cell. -2018 - Vol.30. $-N_{2} 3. - P. 525-527.$

107. Smith, D.R. Gene conversion shapes linear mitochondrial genome architecture / D.R. Smith, P.J. Keeling // Genome biology and evolution. -2013. - Vol. 5. - No 5. - P. 905-912.

108. Spassova, M. Characterisation and expression of the mitochondrial genome of a new type of cytoplasmic male-sterile sunflower / M. Spassova, F. Moneger, C. J. Leaver, P. Petrov, A. Atanassov, H. J. Nijkamp, J. Hille // Plant Molecular Biology. – 1994 – Vol. 26. – \mathbb{N} 6. – P. 1819-1831.

109. Stanley, L. Geographic patterns of genetic variation in three genomes of North American diploid strawberries with special reference to *Fragaria vesca subsp. Bracteata* / L. Stanley, N. J. Forrester, R. Govindarajulu, A. Liston, T. L. Ashman // Botany. – 2015. – Vol. 93. – N_{2} 9. – P. 573-588.

110. Stephens, J.D. Species tree estimation of diploid *Helianthus (Asteraceae)*using target enrichment / J.D. Stephens, W. L. Rogers, C. M. Mason, L. A. Donovan, R.
L. Malmberg // American journal of botany. – 2015. – Vol. 102. – № 6. – P. 910-920.

111. Sugiyama, Y. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants / Y. Sugiyama, Y. Watase, M. Nagase, N. Makita, S. Yagura, A. Hirai, M. Sugiura // Molecular Genetics and Genomics. -2005. - Vol. 272. $- N_{2} 6$. - P. 603-615.

112. Sun, P. Utility of in vitro culture to the study of plant mitochondrial genome configuration and its dynamic features. / P. Sun, M. P. Arrieta-Montiel, S. A. Mackenzie // Theoretical and applied genetics. -2012. -Vol. 125. $-N_{\odot} 3$. -P.449-454.

113. Tan, G. F. Different lengths, copies and expression levels of the mitochondrial atp6 gene in male sterile and fertile lines of carrot (*Daucus carota* L.) / G. F. Tan, F. Wang, X. Y. Zhang, A. I. Xiong // Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis. -2017. -Vol. 29. $-N_{\odot}$ 3. -P. 446-454.

114. Tang, J. A comparison of rice chloroplast genomes / J. Tang, H. Xia, M. Cao, et al. // Plant physiology. -2004. - Vol. 135. $- N_{2}$ 1. - P. 412-420.

115. Tewari, K. K. Chloroplast DNA from tobacco leaves / K. K. Tewari, S. G.
Wildman // Science. – 1966. – Vol. 153. – P. 1269-1271.

116. Thomas, C. M. The nucleotide sequence and transcription of miniclrcular mitochondrial DNA's associated with male-fertile and cytoplasmic male-sterile lines of sugarbeet / C. M. Thomas // Nucleic Acids Research. – 1986. – Vol. 14. – P. 9353–9370.

117. Thorvaldsdottir, H. Integrative Genomics Viewer (IGV): Highperformance genomics data visualization and exploration / H. Thorvaldsdottir, J. T. Robinson, J. P. Mesirov. // Briefings in bioinformatics. – 2013. – Vol. 14. – \mathbb{N} 2. – P. 178-192.

118. Timme, R.E. A comparative analysis of the *Lactuca* and *Helianthus* (*Asteraceae*) plastid genomes: identification of divergent regions and categorization of shared repeats / R.E. Timme, J.V. Kuehl, J.L. Boore, R.K. Jansen // American Journal of Botany. $-2007. - Vol. 94. - N_{2} 3. - P. 302-312.$

119. Unseld, M. The mitochondrial genome of *Arabidopsis thaliana* contains 57 genes in 366,924 nucleotides / M. Unseld, J. R. Marienfeld, P. Brandt, A. Brennicke // Nature Genetics. $-1997 - Vol. 15. - N_{\rm P} 1. - P.57-61.$

120. Vischi, M. Identification of wild species of sunflower by a specific plastid
DNA sequence / M. Vischi, F. Arzenton, E. De Paoli, S. Paselli, E. Tomat, A. M.
Olivieri // Helia. – 2006. – Vol. 29. – P 11-18

121. Wendel, J. F. Plant Genome Diversity Volume 1: Plant Genomes, Their Residents, and Their Evolutionary Dynamics / J. F. Wendel, J. Greilhuber, J. Dolezel, I. J. Leitch. – Wien, Austria: Springer-Verlag, 2012 – 279 p.

122. Whelan, E. D. P. Hybridization between annual and perennial diploid species of *Helianthus* / E. D. P. Whelan // Canadian Journal of Genetics and Cytology – 1978 – Vol. 20. – N_{2} 4. – P. 523-530.

123. Whelan, E. D. P. Registration of sunflower germplasm composite crosses CMG-1, CMG-2, and CMG-3 / E. D. P. Whelan, W. Dedio // Crop Science. -1980 -Vol. 20. $- N_{2} 6. - P. 832.$

124. Wicke, S. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function / S. Wicke, G. M. Schneeweiss, C. W. de Pamphilis, K. F. Muller, D. Quandt // Plant Molecular Biology. – 2011. – Vol. 76. – P. 273–297.

125. Wolfe, K.H. Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant / K. H. Wolfe, C. W. Morden, J. D. Palmer // Proceedings of the National Academy of Sciences of the United States of America. – 1992. – Vol. 89. – N_{2} 22. – P. 10648-10652.

126. Woodson J. D. Coordination of gene expression between organellar and nuclear genomes / J. D. Woodson, J. Chory // Nature Reviews Genetics. – 2008. – Vol. 9. – P. 383-395.

127. Wu, B. Extensive horizontal transfer and homologous recombination generate highly chimeric mitochondrial genomes in yeast / B. Wu, A. Buljic, W. Hao // Molecular biology and evolution. -2015 - Vol 32. -№ 10. -P. 2559-2570.

128. Yamamoto, M. P. The 5'-leader sequence of sugar beet mitochondrial atp6 encodes a novel polypeptide that is characteristic of Owen cytoplasmic male sterility / M. P. Yamamoto, T. Kubo, T. Mikami // Molecular genetics and genomics. – 2005. – Vol. 273. – N_{2} 4. – P. 342-349.

129. Yang, J.H. Mitochondrial atpA gene is altered in a new orf220-type cytoplasmic male-sterile line of stem mustard (*Brassica juncea*) / J. H. Yang, Y. Huai, M. F. Zhang // Molecular Biology Reports. – 2009. – Vol. 36. – № 2. – P. 273–280.

130. Yang, M. The Complete Chloroplast Genome Sequence of Date Palm (*Phoenix dactylifera* L.) / M. Yang, X. Zhang, G. Liu // PLoS One. – 2010. – Vol. 5. – Режим доступа: http://dx.doi.org/10.1371/journal.pone.0012762.

131. Zhang, C. The complete chloroplast genome sequence of the *Cucurbita pepo* L. (*Cucurbitaceae*) / C. Zhang, Q. Zhu, S. Liu, P. Gao, Z. Zhu, X. Wang, F. Luan // Mitochondrial DNA Part B. -2018. -Vol 3. $-N_{2} 2$. -P. 717-718.

132. Zhang, T. The Complete Chloroplast and Mitochondrial Genome Sequences of *Boea hygrometrica*: Insights into the Evolution of Plant Organellar Genomes. / T. Zhang, Y. Fang, X. Wang, X Deng, X Zhang, S Hu, J Yu // PLoS One. – 2012. – Vol. 7. – Режим доступа: http://dx.doi.org/10.1371/journal.pone.0030531.

Приложение 1.

Полиморфные сайты хлоропластной ДНК, локализованные у стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС.

Позици я в геноме НА89 ферт.	Тип	НА89 фертил ьная	HA89 (PET1)	HA89 (PET2)	HA89 (ANN2)	HA89(MAX1)	Локализация	Реги он
124	SNP	G		А	А		МГР <i>rpl2-psbA</i>	LSC
191-192	INDEL	AG				ATTTT CAATT G	МГР <i>rpl2-psbA</i>	LSC
205	INDEL	Т		-	-	-	MFP rpl2-psbA	LSC
206	SSR	A11	A12	A9	A9	A9	MГР rpl2-psbA	LSC
307	SNP	Т				С	MГР <i>rpl2-psbA</i>	LSC
370	SSR	A7				A9	МГР <i>rpl2-psbA</i>	LSC
1649	SNP	G				Т	МГР psbA-matK	LSC
1667	SSR	A6		A7	A8	A9	MГP psbA-matK	LSC
1991	SSR	Т9	T10	T8	T8	T13	МГР psbA-matK	LSC
2032	SSR	T12	T13	Т9	T14	T10	MΓP psbA-matK	LSC
2310	INDEL	Т		-			<i>matK</i> сдвиг рамки считывания	LSC
2984	SNP	А				G	matK Phe195Ser	LSC
3730	SNP	G				Т	MΓP matk-rps16	LSC
3739	SNP	С				А	MΓP matk-rps16	LSC
3953	SSR	T7				T8	MΓP matk-rps16	LSC
4135	SNP	Т				G	MΓP matk-rps16	LSC
4402	SNP	G				А	MГP matk-rps16	LSC
4437	SSR	A7			A6		MГP matk-rps16	LSC
4570	SNP	Т				С	MΓP matk-rps16	LSC
4684	SNP	G			С		MΓP matk-rps16	LSC
4788	SSR	A8				A9	MГP matk-rps16	LSC
4917	SNP	А		G	G	G	MГP matk-rps16	LSC
5002-03	INDEL	AT			ATTGC AGGT		MFP matk-rps16	LSC

5450	SSR	C9	C8	C10	C9		<i>rps16</i> интрон	LSC
5621	INDEL	А				-	<i>rps16</i> интрон	LSC
5653	SNP	А	C	С	C	C	<i>rps16</i> интрон	LSC
5692	SSR	T13	T11	T7	T7	T7	<i>rps16</i> интрон	LSC
5718	SSR	C7			C11	C8	<i>rps16</i> интрон	LSC
5725	INDEL	Т				-	<i>rps16</i> интрон	LSC
5969	SNP	А		Т			<i>rps16</i> интрон	LSC
6024	SNP	G		Т		Т	<i>rps16</i> интрон	LSC
6025	SNP	А		Т			<i>rps16</i> интрон	LSC
6026	SNP	Т		С			<i>rps16</i> интрон	LSC
6153	SNP	Т		С	C		<i>rps16</i> интрон	LSC
6508	SNP	G				Т	MГР rps16-psbK	LSC
6550	INDEL	А		-			MГР rps16-psbK	LSC
6583	SNP	G				А	MFP rps16-psbK	LSC
6773	SNP	С		Т	Т		MFP rps16-psbK	LSC
6963-64	INDEL	AA				ATA	MFP rps16-psbK	LSC
7091-92	INDEL	AG				AAAA GG	MГP rps16-psbK	LSC
7611	SNP	G		А			MFP rps16-psbK	LSC
7720	SSR	A8				A9	MFP rps16-psbK	LSC
7944	SSR	T8		T11	T9		МГР <i>psbK-psbI</i>	LSC
7952-53	INDEL	GA	GATA AAAA TGAT AACA ATA				МГР <i>psbK-psbI</i>	LSC
8294	SSR	T8			T10	Т9	МГР <i>psbK-psbI</i>	LSC
8516	SNP	Т				G	MГР <i>psbI-petN</i>	LSC
8552	SSR	A8		A7	A7	A7	MГР <i>psbI-petN</i>	LSC
8880	SSR	T6				T7	MΓP <i>psbI-petN</i>	LSC
8924	SNP	С				G	MΓP psbI-petN	LSC
9019	SNP	A			G		MΓP <i>psbI-petN</i>	LSC
9080	SNP	Т				С	MΓP psbI-petN	LSC
9359	INDEL	Т				-	MΓP <i>psbI-petN</i>	LSC

9384-85	INDEL	CA				CAA	MГР <i>psbI-petN</i>	LSC
9398	SNP	Т				G	MГР <i>psbI-petN</i>	LSC
9781	SNP	Т		G			MГР <i>psbI-petN</i>	LSC
9831-35	INDEL	ATTA G				-	MГP psbI-petN	LSC
9881	SNP	Т		С	С		MГР <i>psbI-petN</i>	LSC
9882	SSR	A8	A9	A9	A9	A10	MГР <i>psbI-petN</i>	LSC
9890-91	INDEL	AT			ATT	ATT	MГР <i>psbI-petN</i>	LSC
10099	SNP	А		С	С		MГР <i>psbI-petN</i>	LSC
10749	SNP	Т		А	А	А	МГР petN-psbM	LSC
10750	SNP	Т		А	А	А	МГР <i>psbM-rpoB</i>	LSC
11132	SNP	Т		С	С	C	МГР <i>psbM-rpoB</i>	LSC
11339	SNP	G				С	МГР <i>psbM-rpoB</i>	LSC
11530	SNP	G				Т	МГР <i>psbM-rpoB</i>	LSC
11616- 17	INDEL	СА				CACA GAAA A	МГР <i>psbM-rpoB</i>	LSC
12015- 16	INDEL	AG				AGTA GACT ATTA GG	МГР <i>psbM-rpoB</i>	LSC
12204	SNP	G			А		МГР <i>psbM-rpoB</i>	LSC
12249	SNP	А			С		МГР <i>psbM-rpoB</i>	LSC
12667	SNP	А				G	МГР <i>psbM-rpoB</i>	LSC
12759	SSR	A9				A10	МГР <i>psbM-rpoB</i>	
12883	SNP	Т		С	С		МГР <i>psbM-rpoB</i>	LSC
12939- 41	INDEL	AGG		-	-		МГР psbM-rpoB	LSC
12984	SSR	T15	T11	Т9	T10	T14	МГР <i>psbM-rpoB</i>	LSC
13459	SNP	Т				C	<i>гроВ</i> синоним.	LSC
14470	SNP	А				G	<i>гроВ</i> синоним.	LSC
14496	SNP	А		G			rpoB Gln481Arg	LSC
14992	SNP	C				Т	<i>гроВ</i> синоним.	LSC
15565	SNP	Т		С			<i>гроВ</i> синоним.	LSC
16887	SNP	С	А	А	А	А	<i>гроС1</i> интрон	LSC

16964	SSR	A8		A9	A9		<i>гроС1</i> интрон	LSC
17273	SNP	G		А	А		<i>гроС1</i> интрон	LSC
17424	SSR	G9	G8	G7	G7		<i>гроС1</i> интрон	LSC
17643	SNP	А				C	rpoC1 Met210Leu	LSC
17783	SNP	А		C	С		<i>гроС1</i> синоним.	LSC
17814	SNP	С				Т	rpoC1 Arg267Cys	LSC
18307	SNP	G			А		rpoCl Arg431Gln	LSC
18530	SNP	G		Т	Т	Т	<i>гроС1</i> синоним.	LSC
19839	SNP	С		Т	Т		<i>гроС2</i> синоним.	LSC
20660	SNP	Т	С				rpoC2 Leu490Pro	LSC
20750	SNP	С			Т		rpoC2 Thr520Ile	LSC
20945	SNP	Т			G		rpoC2 Leu585Arg	LSC
21054	SNP	С				Т	<i>гроС2</i> синоним.	LSC
22083	SNP	С				А	rpoC2 Asp964Glu	LSC
22539	SNP	С				Т	<i>гроС2</i> синоним.	LSC
23220	SNP	С		Т			<i>гроС2</i> синоним.	LSC
23355	SNP	А		G	G	G	МГР rpoC2-rps2	LSC
23377- 78	INDEL	СС		CCTTT CTTTT ATCTT TTAC			МГР rpoC2-rps2	LSC
23432	SNP	G		А	А		МГР rpoC2-rps2	LSC
24138	SNP	Т		С			<i>rps2</i> синоним.	LSC
24141	SNP	А	С				rps2 Gln178His	LSC
24198	SNP	С		Т			<i>rps2</i> синоним.	LSC
24758	SNP	Т				C	atpI синоним.	LSC
25296	SSR	T8		Т9		T10	MГP atpI-atpH	LSC
25321	SNP	Т			С		MГP atpI-atpH	LSC
25442	SNP	Т		G	G		MГP atpI-atpH	LSC
25466	SSR	A10	A13	A21	A19	A20	МГР atpI-atpH	LSC
25581	SNP	А				G	МГР atpI-atpH	LSC
25779	SNP	Т		С	С	С	МГР <i>atpI-atpH</i>	LSC

25996	SNP	С		G	G	G	МГР atpI-atpH	LSC
27501	SNP	А				С	<i>atpF</i> интрон	LSC
27779- 80	INDEL	TC		TCATT AC	TCATT AC		<i>atpF</i> интрон	LSC
28367- 69	INDEL	TTA		0			МГР <i>atpF-atpA</i>	LSC
28369- 70	INDEL	AT			ATTTT		МГР <i>atpF-atpA</i>	LSC
28372	SNP	А			Т		МГР <i>atpF-atpA</i>	LSC
28372- 73	INDEL	AT	ATT				МГР <i>atpF-atpA</i>	LSC
28592	SNP	А				G	atpA Ile61Val	LSC
28747	SNP	G				А	<i>atpA</i> синоним.	LSC
29422	SNP	А		G	G	G	<i>atpA</i> синоним.	LSC
29458	SNP	С		А	А	А	<i>atpA</i> синоним.	LSC
29521	SNP	А				Т	<i>atpA</i> синоним.	LSC
29701	SNP	G	А				<i>atpA</i> синоним.	LSC
29783	SNP	С		Т			<i>atpA</i> синоним.	LSC
30166	SSR	A10	A12				МГР <i>atpA-psbD</i>	LSC
30176	SNP	Т		G			МГР <i>atpA-psbD</i>	LSC
30568	SNP	С				Т	MΓP atpA-psbD	LSC
30751	SNP	Т				С	MΓP atpA-psbD	LSC
30987- 88	INDEL	TA		TAAA A	TAAA A		МГР atpA-psbD	LSC
31310	INDEL	Т		-	-		МГР <i>atpA-psbD</i>	LSC
31376	SNP	G		Т	Т	Т	МГР <i>atpA-psbD</i>	LSC
31434	SNP	А		С			MΓP atpA-psbD	LSC
31659	SNP	Т			С		МГР <i>atpA-psbD</i>	LSC
32066- 67	INDEL	AT			ATAC ATAA AAAT TAGA ATAG AAAG T		МГР atpA-psbD	LSC
32092	SNP	С		А	A	А	МГР <i>atpA-psbD</i>	LSC
32158	SNP	С				Т	MΓP atpA-psbD	LSC
32377	INDEL	G				-	MΓP atpA-psbD	LSC
				1	39			

32669	SNP	А		G			<i>psbD</i> синоним.	LSC
34038	SNP	G		А	А		<i>psbC</i> синоним.	LSC
34218	SNP	G		А	А	А	<i>psbC</i> синоним.	LSC
35019	SSR	A9		A16	A16	A8	МГР <i>psbC-psbZ</i>	LSC
35038- 42	INDEL	TCAA C		-	-		МГР <i>psbC-psbZ</i>	LSC
35060- 61	INDEL	AT				ATT	МГР <i>psbC-psbZ</i>	LSC
35398	SSR	A18	A30	A24	A30	A22	МГР <i>psbC-psbZ</i>	LSC
35495	SNP	Т				С	МГР <i>psbC-psbZ</i>	LSC
35885	SSR	A9	A8	A7	A7	A7	МГР psbZ-rps14	LSC
35927	SNP	А				G	МГР psbZ-rps14	LSC
36044- 45	INDEL	CA				CATA	МГР psbZ-rps14	LSC
36456	SNP	G		С	С	С	МГР psbZ-rps14	LSC
36937	SNP	Т		А	А	А	МГР rps14-psaB	LSC
38902	SNP	А				G	<i>рѕаВ</i> синоним.	LSC
39980	SNP	G	А	А	А	Α	<i>рѕаА</i> синоним.	LSC
40412	SNP	А				G	<i>рѕаА</i> синоним.	LSC
40748	SNP	С			Т		<i>рѕаА</i> синоним.	LSC
40880	SNP	А				G	<i>рѕаА</i> синоним.	LSC
41098	SNP	G				Т	psaA Leu144Ile	LSC
41604	SNP	А			Т		MГР psaA-ycf3	LSC
42375	SNP	Т		С	С	С	<i>ycf3</i> синоним.	LSC
42780	SNP	Т				G	<i>усf3</i> интрон	LSC
43668	SNP	Т	А	А	А	А	<i>усf3</i> интрон	LSC
43798	SNP	А		G	G	G	<i>усf3</i> интрон	LSC
43894	SNP	С				Т	<i>усf3</i> интрон	LSC
44285	SNP	С		А			MГР ycf3-rps4	LSC
44324	SSR	A8		A10	A14	A10	МГР ycf3-rps4	LSC
44539	SNP	G		А			МГР ycf3-rps4	LSC
44686	SNP	А				C	МГР ycf3-rps4	LSC
45331	SNP	Т		С	C		МГР ycf3-rps4	LSC

45355	SNP	С				Т	МГР ycf3-rps4	LSC
46330	SNP	G		А			MГP rps4-ndhJ	LSC
46716	SNP	А				G	MГP rps4-ndhJ	LSC
46721	SSR	A15		A13	A22	A11	MГP rps4-ndhJ	LSC
46980	SNP	А	G				MГP rps4-ndhJ	LSC
47317	INDEL	Т		0			MГP rps4-ndhJ	LSC
47349- 59	INDEL	ATTG AAGA AAG		0	0		MΓP rps4-ndhJ	LSC
47553	SNP	С				Т	MΓP rps4-ndhJ	LSC
47687	SNP	G			Т		MΓP rps4-ndhJ	LSC
47763	SNP	А		G	G	G	MГР rps4-ndhJ	LSC
47781	SNP	А				С	MΓP rps4-ndhJ	LSC
47875	INDEL	Т		0	0		MГP rps4-ndhJ	LSC
48193	SNP	Т				А	MГP rps4-ndhJ	LSC
48363	SNP	А		G	G		ndhJ Val107Ala	LSC
49305	SNP	А		G	G	G	ndhК синоним.	LSC
49678	SNP	А				Т	<i>ndhC</i> синоним.	LSC
49986- 50004	INDEL	GTTTC CTTTT GCGG GGCG T				-	МГР ndhC-atpE	LSC
50032- 41	INDEL	ATCTA CATA G	-				МГР ndhC-atpE	LSC
50049	SSR	T8			Т9		МГР ndhC-atpE	LSC
50095	SNP	С		Т	Т		МГР ndhC-atpE	LSC
50163	SSR	T10	T12		T15		МГР ndhC-atpE	LSC
50261- 62	INDEL	TA		TAAT ATATT GA	TAAT ATATT GA		MГP ndhC-atpE	LSC
50617	INDEL	А		-	-		МГР ndhC-atpE	LSC
50706	SNP	С				А	МГР ndhC-atpE	LSC
50739	SNP	А				С	МГР ndhC-atpE	LSC
50764	SSR	T11	T8	T7	T7	T7	МГР ndhC-atpE	LSC

50770- 71	INDEL +SNP	TT				TGATT TTCA	МГР ndhC-atpE	LSC
50775	SNP	G				Т	MFP ndhC-atpE	LSC
51294	SNP	С				G	МГР ndhC-atpE	LSC
51778	SSR	T10	T9	T21	T22	T12	МГР ndhC-atpE	LSC
51738	SNP	С		Т	Т		МГР ndhC-atpE	LSC
51753	SNP	А				C	МГР ndhC-atpE	LSC
52166	SNP	Т		C			<i>atpE</i> синоним.	LSC
52330	SNP	С				Т	<i>atpB</i> синоним.	LSC
52386	SNP	С		Т	Т		atpB Gly468Ser	LSC
52717	SNP	А		G	G	G	<i>atpB</i> синоним.	LSC
52734	SNP	А				G	<i>atpB</i> синоним.	LSC
53110	SNP	А			G		<i>atpB</i> синоним.	LSC
54161	SNP	G		Т	Т	Т	МГР atpB-rbcL	LSC
54286	SNP	А	Т				МГР atpB-rbcL	LSC
54287	SNP	А		G	G	G	МГР atpB-rbcL	LSC
54313	SSR	A15	A15	A17	A21	A16	МГР atpB-rbcL	LSC
54385	SNP	Т				G	МГР atpB-rbcL	LSC
54399	SNP	А				G	МГР atpB-rbcL	LSC
54726	SNP	Т		С	C		<i>rbcL</i> синоним.	LSC
55291	SNP	Т				А	<i>rbcL</i> Cys247Asn совместно с 55292	LSC
55292	SNP	G				А	<i>rbcL</i> Cys247Asn совместно с 55291	LSC
55323	SNP	Т				C	<i>rbcL</i> синоним.	LSC
55393	SNP	Т				G	<i>rbcL</i> Ser281Ala	LSC
55396	SNP	С				А	rbcL Gln282Lys	LSC
55534	SNP	Т				G	rbcL Ser328Ala	LSC
55675	SNP	С				А	<i>rbcL</i> Leu375Ile совместно с 55677	LSC
55677	SNP	G				А	<i>rbcL</i> Leu375Ile совместно с 55675	LSC
55837	SNP	С				A	rbcL Gln429Lys	LSC
55996	SNP	G				Т	rbcL Asp482Tyr	LSC
56024- 25	INDEL	AA				AATT GAAT	МГР rbcL-accD	LSC

						TTA		
56245	SNP	С		Т	Т		МГР rbcL-accD	LSC
56514	SNP	А		G	G		МГР rbcL-accD	LSC
56559	SNP	С				А	МГР rbcL-	LSC
57148	SNP	А				C	accD Glu191Ala	LSC
57593	SNP	А		G	G	G	асс Синоним.	LSC
58051	SNP	G		А	А		МГР accD-psal	LSC
58257	SSR	A7				A8	МГР accD-psal	LSC
58362	SNP	Т				А	МГР accD-psal	LSC
58406- 09	INDEL	CTAA		-	-		МГР accD-psaI	LSC
58509	SNP	С		Т			МГР accD-psaI	LSC
58548- 49	INDEL	TA		TAG	TAG		МГР accD-psaI	LSC
58639- 40	INDEL	CC				CCTTA TAC	МГР accD-psaI	LSC
58654	SNP	А	G	G	G	G	МГР accD-psaI	LSC
58854- 55	INDEL	AT		ATCTC TTTTT T	ATCTC TTTTT TTTT	ATCTC TTTTT TT	МГР psal-ycf4	LSC
58899- 00	INDEL	AA		AAAA TATG GTAT A	AAAA TATG GTAT A	AAAA TATG GTAT A	MГР psal-ycf4	LSC
58978	SNP	А				C	MГР psaI-ycf4	LSC
59126- 27	INDEL	GT		GTT			МГР psaI-ycf4	LSC
59133	SNP	С		Т			MГР psaI-ycf4	
59445	SNP	С				Т	<i>усf4</i> синоним.	LSC
60017	SSR	C6	C7	C7			МГР ycf4-cemA	
60063	SNP	Т		С	С	C	МГР ycf4-cemA	LSC
60256	SNP	G				Т	МГР ycf4-cemA	LSC
60296- 97	INDEL	AC		ATC	ATC	ATC	МГР ycf4-cemA	LSC
60337	SNP	G		А	А		МГР ycf4-cemA	LSC
60434	SSR	T6		T7	T8	T9	МГР ycf4-cemA	LSC
60534	SNP	Т			С		МГР ycf4-cemA	LSC
61309-	INDEL	GT		GAT	GAT	GAT	MΓP cemA-petA	LSC

10								
61429- 30	INDEL	TT				TTCCA GTAA ATAA CAGA ATCGT GGAT	МГР cemA-petA	LSC
62567- 68	INDEL	СТ		CTT			МГР petA-psbJ	LSC
62574	SNP IN DEL	G		Т	-		МГР petA-psbJ	LSC
62578	SNP	А		Т			MFP petA-psbJ	LSC
62683	SSR	T22	T20	T15	T16		МГР petA-psbJ	LSC
62981	SNP	А			С		МГР petA-psbJ	LSC
63061	SNP	А				С	МГР <i>petA-psbJ</i>	LSC
63095	SNP	А		G	G	G	МГР petA-psbJ	LSC
63114	SNP	G		А	А		МГР petA-psbJ	LSC
63123	SNP	Т		А	А	А	МГР petA-psbJ	LSC
63199	SNP	С				Т	МГР petA-psbJ	LSC
63214- 15	INDEL	CA				СТА	МГР petA-psbJ	LSC
63681	SNP	Т		А	А	А	МГР <i>psbL-psbF</i>	LSC
64145	SSR	A9	A8	A14			MΓP <i>psbE-petL</i>	LSC
64603	SNP	Т		С	C	C	MΓP <i>psbE-petL</i>	LSC
64668	SNP	С	Т	Т	Т	Т	MΓP <i>psbE-petL</i>	LSC
64939	SSR	A23			A11		MΓP <i>psbE-petL</i>	LSC
64962	INDEL	G			0		MΓP <i>psbE-petL</i>	LSC
65016	SNP	G		Т	Т		MΓP <i>psbE-petL</i>	LSC
65328	SNP	С				Т	petL Pro2Leu	LSC
65438	SNP	G		Т	Т	Т	$M\GammaP\ petL\text{-}petG$	LSC
65714	SSR	T16			T21	T13	МГР petG-psaJ	LSC
65930	SNP	С				G	МГР petG-psaJ	LSC
65941	SNP	G		А	А	A	МГР petG-psaJ	LSC
65948	SNP	А		G			МГР petG-psaJ	LSC
66020	SNP	С				Т	МГР petG-psaJ	LSC
66305	SNP	G				A	MГР petG-psaJ	LSC
66341	SNP	Т		С	С		МГР petG-psaJ	LSC
-----------------	-------	------------------------	-----	------------------------------	-----	------------	----------------------	-----
67224	SNP	G			Т		МГР rpl33-rps18	LSC
67257- 58	INDEL	TT		TTAT			MFP rpl33-rps18	LSC
67344	SNP	С				Т	MFP rpl33-rps18	LSC
67858- 67871	INDEL	TTTAT TTTGA CTAC		-	-		MΓP rps18-rpl20	LSC
67903- 04	INDEL	AT				ATTCT T	MГP rps18-rpl20	LSC
68357	SNP	С		Т	Т		МГР rpl20-clpP	LSC
68917	SNP	С		Т	Т		МГР rpl20-clpP	LSC
69192	SNP	С				А	МГР rpl20-clpP	LSC
69743	SSR	A6				A7	<i>clpP</i> интрон	LSC
69936	SSR	T10		T13	T11	Т9	<i>clpP</i> интрон	LSC
70545	SSR	A15	A20	A7	A7	A10	<i>clpP</i> интрон	LSC
70560	INDEL	G		-	-		<i>clpP</i> интрон	LSC
70584	SSR	Т9	T10	T10			<i>clpP</i> интрон	LSC
71373	SNP	С				А	МГР clpP-psbB	LSC
72744	SNP	G		С	С		<i>psbB</i> синоним.	LSC
73356- 62	INDEL	TTTTT AT				0	МГР <i>psbB-psbT</i>	LSC
73363	SNP	Т		А	А		МГР <i>psbB-psbT</i>	LSC
73364- 65	INDEL	TT		TAGG GTAC CAGA GAAT			МГР <i>psbB-psbT</i>	LSC
73365	SNP	Т		А	А		МГР <i>psbB-psbT</i>	LSC
73367	SNP	Т				G	МГР <i>psbB-psbT</i>	LSC
73405	SSR	T7		T8	T8	Т9	МГР <i>psbB-psbT</i>	LSC
73602- 603	INDEL	AA	-	-	-	-	МГР <i>psbT-psbN</i>	LSC
74157	SNP	Т	А	А	А	А	МГР <i>psbH-petB</i>	LSC
74221	SNP	С		Т			MГP psbH-petB	LSC
74527	SNP	Т		С	С	С	<i>petВ</i> интрон	
74549	SNP	А				G	<i>petВ</i> интрон	LSC
74682	SNP	G				A	<i>petВ</i> интрон	LSC

74908	SNP	С		А	А		<i>petВ</i> интрон	LSC
75058	SNP	А				G	<i>petB</i> синоним.	LSC
75067	SNP	Т				С	<i>petB</i> синоним.	LSC
75820	SNP	А				Т	MГP petB-petD	LSC
76370	SNP	А	С				petD интрон	LSC
77205	SNP	G		А			МГР petD-rpoA	LSC
77216	SNP	G		А	А		МГР petD-rpoA	LSC
77234	SSR	A10		A11		A9	МГР petD-rpoA	LSC
77299	SNP	Т		С	С		<i>гроА</i> синоним.	LSC
78307- 08	INDEL	TT			TTCTC TTGTT TCTCT TGCT		MГР rpoA-rps11	LSC
78756	SNP	Т			С		rps11 Lys8Arg	LSC
79110	INDEL	А				-	МГР rpl36-infA	LSC
79380	SNP	С		Т	Т		MΓP infA-rps8	LSC
79664	SNP	G		Т	Т	Т	rps8 Pro72Thr	LSC
79820	SNP	Т		G	G		rps8 синоним.	LSC
79932	SSR	T22	T15	T19	T17		MГP rps8-rpl14	LSC
80456	SSR	T24				T27	МГР rpl14-rpl16	LSC
80718	SNP	G	А				<i>rpl16</i> синоним.	LSC
81057	SNP	G	А	С	А	А	MГP rpl16-rps3	LSC
812333 4	INDEL	AT		-			MГР rpl16-rps3	LSC
81347	SNP	G		А	А		MГР rpl16-rps3	LSC
81555	SNP	А	G				MГР rpl16-rps3	LSC
81762	SNP	С				Т	MГР rpl16-rps3	LSC
82164	SNP	А			C		MГР rpl16-rps3	LSC
82083	SSR	T8				AT9	MГР rpl16-rps3	LSC
82328	SNP	G				А	<i>rps3</i> синоним.	LSC
82899	SNP	С				Т	rpl22 AlThr	LSC
83644	SSR	T8		Т9	Т9		MГP rps19-rpl2	LSC
89152	SNP	А				G	ycf2 Ile1110Val	LSC

92346	SNP	G		А	А		МГР ycf2-ndhB	LSC
92490	SNP	С				Т	МГР ycf2-ndhB	IRA
92960	SNP	А		G			МГР ycf2-ndhB	IRA
95380	SNP	А		G	G		<i>ndhB</i> синоним.	IRA
95585	SNP	G		А	А	А	MГP ndhB-rps7	IRA
97727	SNP	Т		С	С	C	МГР rps7-rrn16	IRA
98298	SNP	А				С	МГР rps7-rrn16	IRA
98515	SNP	А		Т	Т		МГР rps7-rrn16	IRA
98838	SNP	С		G	G	G	МГР rps7-rrn16	IRA
101481	SSR	Т9				T10	MΓP rrn16-rrn23	IRA
101685	INDEL	AG		AGG	AGG	AGAT TTTCG	MГР rrn16-rrn23	IRA
102333	SNP	G		А	А	А	MFP rrn16-rrn23	IRA
106389	SNP	Т				А	MГР rrn5-ycf1	IRA
106431	SNP	Т		G		G	MTP rrn5-ycf1	IRA
106600	SNP	С				G	MTP rrn5-ycf1	IRA
108400	SNP	С		G	G		ycf1 Asn271Lys	IRA
108541	SNP	С	А	А	А	А	<i>ycf1</i> синоним.	IRA
108697	SNP	G	А				<i>ycf1</i> синоним.	IRA
108722	SNP	А				С	ycf1 Ile379Leu	SSC
109194	SNP	С			Т		ycf1 Pro536Leu	SSC
109640	SNP	G		А	А		ycf Asp685Asn	SSC
109766	SNP	Т		С	С	C	<i>ycf1</i> синоним.	SSC
109850	SNP	С			G		ycf1 Arg755Gly	SSC
110520	SNP	С		G	G		ycf1 Thr978Arg	SSC
110568	SNP	С		А	А	А	ycf1 Thr994Lys	SSC
110913	SNP	Т				С	ycfl Vall109Ala	SSC
110918	SNP	С		A	A	A	ycfl His1111Asn	SSC
111048	SNP	С				А	ycfl Ser1154Tyr	SSC
111059	SNP	С			G		ycf1 Pro1158Ala	SSC
111166	SNP	G				А	ycfl синоним.	SSC
111605	SNP	Т		G	G	G	ycf1 Tyr1340Asp	SSC

111659	SNP	C		Т	Т	Т	ycf1 Pro1358Ser	SSC
111983	SNP	А		С	С	С	ycf1 Ile1466Leu	SSC
113410	SNP	G				А	МГР rps15-ndhH	SSC
114382	SNP	Т		С	С		ndhH Val298Ala	SSC
114585	SNP	С		Т			ndhH Pro366Ser	SSC
114863	SNP	С		Т			ndhA Pro64Leu	SSC
115489	SNP	G			А		ndhA интрон	SSC
115703	INDEL	С		-	-		ndhA интрон	SSC
115793	INDEL	Т		-	-		ndhA интрон	SSC
116179	SNP	С		Т	Т		ndhA интрон	SSC
116185- 89	INDEL	AATA A		-	-		ndhA интрон	SSC
117052	SNP	С				Т	ndhI синоним.	SSC
117506	SNP	G			Т		МГР ndhI-ndhG	SSC
117529	SNP	G		Т	Т	Т	МГР ndhI-ndhG	SSC
117833	SNP	С	Т	Т	Т	Т	ndhG синоним.	SSC
118438	SNP	G	Т	Т	Т	Т	MΓP ndhG-ndhE	SSC
118566	SNP	Т			С		<i>ndhE</i> синоним.	SSC
118728	SNP	А		G	G		ndhE синоним.	SSC
118881- 82	INDEL	TC		TCATA AATT AATTC AAAT TAGC	TCATA AATT AATTC AAAT TAGC	TCATA AATT AATTC AAAT TAGC	MГP ndhE-psaC	SSC
119344	SSR	T7		T8	T8		МГР psaC-ndhD	SSC
119363	SNP	Т				С	МГР psaC-ndhD	SSC
119377	SNP	Т		А		А	МГР psaC-ndhD	SSC
119378	SNP	C		G		G	МГР psaC-ndhD	SSC
119379	SNP	Т		А		А	МГР psaC-ndhD	SSC
119751	SNP	Т		G			ndhD синоним.	SSC
119835	SNP	А			Т		ndhD синоним.	SSC
119952	SNP	С		Т	Т		ndhD синоним.	SSC
120314	SNP	Т		С	С	С	ndhD Leu296Pro	SSC
120937	INDEL	А		-	-	-	МГР ndhD-ccsA	SSC

120979	SSR	A16	A13	A20	A19	A10	МГР ndhD-ccsA	SSC
121092	SNP	Т				C	МГР ndhD-ccsA	SSC
121100- 01	INDEL	AA				ACA	MΓP ndhD-ccsA	SSC
121101	SNP	А				Т	MГP ndhD-ccsA	SSC
121102	SNP	G				A	MГP ndhD-ccsA	SSC
121105	SNP	G				C	МГР ndhD-ccsA	SSC
121108	INDEL	Т				0	МГР ndhD-ccsA	SSC
121109	SNP	А				C	МГР ndhD-ccsA	SSC
121110	SNP	G				Т	МГР ndhD-ccsA	SSC
121119	SNP	G				А	МГР ndhD-ccsA	SSC
121160- 67	INDEL	TATTG CAT		-	-	-	MГP ndhD-ccsA	SSC
121676	SNP	А				C	ccsA Asn167Lys	SSC
121775	SNP	С				Т	<i>ccsA</i> синоним.	SSC
121813	SNP	G				A	ccsA His122Tyr	SSC
122087	SNP	С		А	А		ccsA Leu30Phe	SSC
122442- 63	INDEL	AGTA AAGA TTCAA ATTG ATAA		-	-	-	МГР ccsA-rpl32	SSC
122603	SNP	А		С	C		МГР ccsA-rpl32	SSC
122917- 18	INDEL	GA				GAAA	МГР ccsA-rpl32	SSC
122970	SSR	T13	T12	T18	T19	T13	МГР ccsA-rpl32	SSC
122982- 83	INDEL	ТА				TAGA TTTTA	МГР ccsA-rpl32	SSC
123004	SNP	Т	С				МГР ccsA-rpl32	SSC
123388	SNP	А				C	МГР rpl32-ndhF	SSC
123406	SNP	А				Т	МГР rpl32-ndhF	SSC
123963	SNP	А		G	G	G	МГР rpl32-ndhF	SSC
124343	SNP	G		А	А		ndhF синоним.	SSC
125027	SNP	А		С	C	C	ndhF синоним.	SSC
125593	SNP	Т	С	С	C	C	ndhF Leu477Ser	SSC
125888	SNP	А		Т			ndhF Gln573His	SSC

125944	SNP	G			А	ndhF Ser592Asn	SSC
125949	SNP	А	Т			ndhF Asn594Tyr	SSC
126087	SNP	G	Т	Т	Т	ndhF Val640Phe	SSC
126194	SNP	С			А	ndhF Phe675Leu	SSC
126449- 50	INDEL	СТ	CTTTA ATTG AGTCT TTAAT TCTT			MΓP ndhF-rrn5	SSC
128035	SNP	G			С	МГР ndhF-rrn5	SSC
128204	SNP	А	С		С	MΓP ndhF-rrn5	SSC
128243	SNP	С			Т	MΓP ndhF-rrn5	IRB
128244	SNP	А			Т	MΓP ndhF-rrn5	IRB
128246	SNP	А			Т	MΓP ndhF-rrn5	IRB
132302	SNP	С	Т	Т	Т	MΓP rrn23-rrn16	IRB
100044							
132944-	INDEL	TC	TCC	TCC	TCC	MΓP rrn23-rrn16	IRB
132944- 45 133146	INDEL SSR	TC A9	TCC	TCC	TCC A10	MГР rrn23-rrn16 MΓP rrn23-rrn16	IRB IRB
132944- 45 133146 135797	INDEL SSR SNP	TC A9 G	TCC C	TCC C	TCC A10 C	МГР rrn23-rrn16МГР rrn23-rrn16МГР rrn16-rps7	IRB IRB IRB
132944- 45 133146 135797 136120	INDEL SSR SNP SNP	TC A9 G T	TCC C A	TCC C A	TCC A10 C	 МГР rrn23-rrn16 МГР rrn23-rrn16 МГР rrn16-rps7 МГР rrn16-rps7 	IRB IRB IRB IRB
132944- 45 133146 135797 136120 136337	INDEL SSR SNP SNP SNP	TC A9 G T T	TCC C A	TCC C A	TCC A10 C G	 МГР rrn23-rrn16 МГР rrn23-rrn16 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 	IRB IRB IRB IRB IRB
132944- 45 133146 135797 136120 136337 136908	INDEL SSR SNP SNP SNP SNP	TC A9 G T T A	TCC C A G	TCC C A G	TCC A10 C G G	 МГР rrn23-rrn16 МГР rrn23-rrn16 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 	IRB IRB IRB IRB IRB IRB
132944- 45 133146 135797 136120 136337 136908 139050	INDEL SSR SNP SNP SNP SNP SNP	TC A9 G T T A C	TCC C A G T	TCC C A G T	TCC A10 C G G T	 МГР rrn23-rrn16 МГР rrn23-rrn16 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rps7-ndhB 	IRB IRB IRB IRB IRB IRB
132944- 45 133146 135797 136120 136337 136908 139050 139255	INDEL SSR SNP SNP SNP SNP SNP SNP	TC A9 G T T A C T	TCC C A G T C	TCC C A G T C	TCC A10 C G G G T	МГР rrn23-rrn16 МГР rrn23-rrn16 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rps7-ndhB ndhB синоним.	IRB IRB IRB IRB IRB IRB IRB
132944- 45 133146 135797 136120 136337 136908 139050 139255 141675	INDEL SSR SNP SNP SNP SNP SNP SNP SNP	TC A9 G T T A C T T	TCC C A G T C C	TCC C A G T C	TCC A10 C G G T	МГР rrn23-rrn16 МГР rrn23-rrn16 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rps7-ndhB ndhB синоним. МГР ndhB-ycf2	IRB IRB IRB IRB IRB IRB IRB IRB
132944- 45 133146 135797 136120 136337 136908 139050 139255 141675 142145	INDEL SSR SNP SNP SNP SNP SNP SNP SNP SNP	TC A9 G T T A C T T G	TCC C A G T C C	TCC C A G T C	TCC A10 C G G G T T A	 МГР rrn23-rrn16 МГР rrn23-rrn16 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rps7-ndhB ndhB синоним. МГР ndhB-ycf2 МГР ndhB-ycf2 	IRB IRB IRB IRB IRB IRB IRB IRB IRB
132944- 45 133146 135797 136120 136337 136908 139050 139255 141675 142145	INDEL SSR SNP SNP SNP SNP SNP SNP SNP SNP SNP	TC A9 G T T A C T T G C	TCC C A G T C C C T	TCC C A G T C T	TCC A10 C G G G T A	МГР rrn23-rrn16 МГР rrn23-rrn16 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rps7-ndhB ndhB синоним. МГР ndhB-ycf2 МГР ndhB-ycf2	IRB IRB IRB IRB IRB IRB IRB IRB IRB IRB
132944- 45 133146 135797 136120 136337 136908 139050 139255 141675 142145 145483	INDEL SSR SNP SNP SNP SNP SNP SNP SNP SNP SNP SNP	TC A9 G T T A C T T G C T	TCC C A G T C C T	TCC C A G T C T	TCC A10 C G G G T T A A	 МГР rrn23-rrn16 МГР rrn23-rrn16 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rrn16-rps7 МГР rps7-ndhB ndhB синоним. МГР ndhB-ycf2 МГР ndhB-ycf2 Усf2 Ile1110Val 	IRBIRBIRBIRBIRBIRBIRBIRBIRBIRBIRBIRBIRBIRBIRBIRBIRB

Приложение 2.

Полиморфные сайты митохондриальной ДНК, локализованные у стерильных аналогов линии НА89 подсолнечника с различными типами ЦМС.

Позиция в геноме НА89 ферт.	Тип	НА89 ферт.	HA89 (PET1)	HA89 (PET2)	HA89 (ANN2)	HA89 (MAX1)	Локализация
345	INDEL	Т			-		МГР coxII-nad2
697	SNP	А			G	G	МГР <i>coxII-nad2</i>
1477	SNP	А			C	С	MГР coxII-nad2
1769	SNP	А			C		MГР coxII-nad2
3031	SSR	G5		G6	G6	G6	МГР nad2-ccmC
3107	SSR	T5		T6	T4	T4	МГР nad2-ccmC
3114	SNP	А			Т	Т	МГР nad2-ccmC
3116	SNP	Т			A	А	МГР nad2-ccmC
3117	SNP	Т			G	G	МГР nad2-ccmC
3124	INDEL	А			-	-	МГР nad2-ccmC
3147	SNP	Т			G		МГР nad2-ccmC
3153	SNP	G			Т		МГР nad2-ccmC
3175	SNP	G			A		МГР nad2-ccmC
3176	SNP	Т			A		МГР nad2-ccmC
3177	SNP	Т			A		МГР nad2-ccmC
3178	SNP	Т			A		МГР nad2-ccmC
3183	SNP	А			Т		МГР nad2-ccmC
3190	SNP	А			С		МГР nad2-ccmC
3200	SNP	А			Т	Т	МГР nad2-ccmC
3213-14	INDEL	AG			-		МГР nad2-ccmC
3253-95	INDEL	TCTAT CTTTT CATTT TTATA TTTAT ATATT TTGAA AATCA			TATT ATTA AGAA TA		MГP nad2-ccmC

		AGA				
3312	SNP	А		Т		МГР nad2-ccmC
3339	SNP	А		Т		МГР nad2-ccmC
3360-62	INDEL	AAG		-		МГР nad2-ccmC
3376	SNP	С		А		MГP nad2-ccmC
3377	SNP	Т		А		МГР nad2-ccmC
3385-86	INDEL	AT		ATCT	ATCT	МГР nad2-ccmC
3393	SNP	Т		G	G	МГР nad2-ccmC
3394	SNP	G		Т	Т	МГР nad2-ccmC
3398	INDEL	G		-	-	МГР nad2-ccmC
3400-02	INDEL	CGA		CAGA A	CAGA A	MГP nad2-ccmC
3404	SNP	А		С	С	МГР nad2-ccmC
3408	SNP/I NDEL	Т		G	-	MГP nad2-ccmC
3409	SNP	А		G	G	МГР nad2-ccmC
3605	SNP	С		Т		МГР nad2-ccmC
3865-68	INDEL	TTTA		-		МГР nad2-ccmC
3884	SNP	Т		G		МГР nad2-ccmC
3993	SNP	С		Т		МГР nad2-ccmC
4043	SNP	С		G		МГР nad2-ccmC
4337	SNP	G		С		МГР nad2-ccmC
4422	SNP	G		С		МГР nad2-ccmC
5012	SNP	G		А		МГР nad2-ccmC
6177-6243	INDEL	AAGAA TAATG AAAAA CAAAA ACAAA AAAAA AAAAA AAAAA AAAAA AAAAA AAAAA		AACA AAAA AGAA		МГР nad2-ccmC

		TAAAG				
		AA				
7267	SNP	G		А		МГР nad2-ccmC
7404	SSR	G10	G9	G8	G8	МГР nad2-ccmC
8023	SNP	G		Т		МГР nad2-ccmC
8338	SNP	С		А		МГР nad2-ccmC
8769	SNP	С		G		МГР nad2-ccmC
9304	SNP	А		G	G	МГР nad2-ccmC
9335	SNP	G		Т		МГР nad2-ccmC
10467	SNP	А	C	С	С	МГР nad2-ccmC
10823	SNP	С		G	G	МГР nad2-ccmC
10996-99	INDEL	TTTC		-		МГР nad2-ccmC
11005	SNP	Т		С		МГР nad2-ccmC
11005	SNP	С		Т		МГР nad2-ccmC
11248-49	INDEL	СТ		-	-	МГР nad2-ccmC
11850	SNP	G		Т	Т	МГР nad2-ccmC
11976	SNP	С		G		МГР nad2-ccmC
18258	SNP	А		G		МГР ccmC-atp4
19594	SNP	G	А	A	A	МГР ccmC-atp4
20527	SNP	А		G		МГР ccmC-atp4
21892	SNP	А		G		МГР ccmC-atp4
23376	SNP	Т		С		МГР ccmC-atp4
23595	SNP	G		A		МГР ccmC-atp4
23887	SNP	Т		G		МГР ccmC-atp4
23917	SNP	G	Т	Т	Т	МГР ccmC-atp4
23918	SNP	А		C	C	МГР ccmC-atp4
25987	SNP	Т		G		МГР ccmC-atp4
29048	SNP	С		Т		МГР nad4L-orf777
29049	SNP	С		Т		МГР nad4L-orf777
29068	SNP	G		Т		МГР nad4L-orf777
29121-24	INDEL	AATC		-		МГР nad4L-orf777

29128	SNP	Т		G		MГP nad4L-orf777
29129	SNP	G		A		MГP nad4L-orf777
29130	SNP	Т		С		MГP nad4L-orf777
29140	SNP	Т		G	G	MГP nad4L-orf777
29149	SNP	G		Т		MГP nad4L-orf777
29151	SNP	Т		С		MГP nad4L-orf777
29153	SNP	G		Т		MГP nad4L-orf777
33779	SNP	С		G		MГP nad4L-orf777
33823	SNP	С		G		MГP nad4L-orf777
34181	SNP	G		A		MГP nad4L-orf777
34333-34	INDEL	CG		CCGG		МГР nad4L-orf777
34337	SNP	А		G		MГP nad4L-orf777
34750	SNP	С		Т		МГР nad4L-orf777
35031	SNP	С	A	A		МГР nad4L-orf777
35114	SNP	С	A	A		MГP nad4L-orf777
35478	SNP	Т	C	С	С	МГР nad4L-orf777
35507-15	INDEL	TCCGG CAAG		TTCTT TCCG AAAG		MГP nad4L-orf777
35522	SNP	С		Т		MГP nad4L-orf777
35523	SNP	Т		G		МГР nad4L-orf777
35525	SNP	А		Т		МГР nad4L-orf777
35531	SNP	С		A		МГР nad4L-orf777
35542	SNP	С		G		МГР nad4L-orf777
35550	SNP	С		Т		МГР nad4L-orf777
36947	SNP	А		G		atp8 Asp59Gly
37409	SNP	G		А		MГP atp8-coxIII
38134	SNP	С		A		<i>сохШ</i> синоним.
39589	INDEL	GA		GAA	GAA	МГР <i>coxIII-rpl5</i>
39787	SNP	G		A		МГР <i>coxIII-rpl5</i>
41238-39	INDEL	GG		GTTG		МГР <i>coxIII-rpl5</i>

41243-44	INDEL	AA			-		MГР coxIII-rpl5
41462	SSR	T7			T8		МГР coxIII-rpl5
41746	SNP	G			Т	Т	МГР coxIII-rpl5
41747	SNP	А			C		МГР coxIII-rpl5
43358	SNP	G			Т		<i>rpl5</i> синоним.
43533	SNP	G			A		MГP rpl5-nad4
44995	SNP	А			С		MГP rpl5-nad4
47939	SNP	Т			G		nad4 интрон
47940	SNP	С			A		nad4 интрон
47954	SNP	Т			G		nad4 интрон
47955	SNP	G			Т		nad4 интрон
49509	SNP	С			Т	Т	MГP nad4-ccmB
49779-80	INDEL	TA			TGA		MГP nad4-ccmB
49796	SNP	G			A		MГP nad4-ccmB
50856	SNP	Т			G	G	MГP nad4-ccmB
50857	SNP	С		A	A	А	MГP nad4-ccmB
50987	SNP	G			Т		MГP nad4-ccmB
51679	SSR	G10	G9	G9	G8	G9	MГP nad4-ccmB
51702	SNP	А			С		MГP nad4-ccmB
52002	SNP	Т			С	С	MГP nad4-ccmB
56443	SSR	A6			A5		MГP nad4-ccmB
56444	SNP	А			С		MГP nad4-ccmB
56476-77	INDEL	AT			-		MГP nad4-ccmB
56482	SNP	Т			G		MГP nad4-ccmB
56483	SNP	С			A		MГP nad4-ccmB
56550	SSR	T5			T6		MГP nad4-ccmB
57336	SNP	G			Т	Т	MГP nad4-ccmB
57338	SNP	Т			G	G	MГP nad4-ccmB
57339	SNP	С			А	А	MГP nad4-ccmB
60934	SNP	G			А		MГP nad4-ccmB
62299	SNP	Т			С		MIP nad4-ccmB

62357	SNP	Т		C		MГP nad4-ccmB
62361	SNP	Т	G	G	G	MΓP nad4-ccmB
62388	SNP	С		Т		MΓP nad4-ccmB
62394	SNP	G		A		MΓP nad4-ccmB
62404	SNP	G	А	A	А	MΓP nad4-ccmB
63464-65	INDEL	TC		TCC	ТСС	MΓP nad4-ccmB
64351	SNP	G		Т		MΓP nad4-ccmB
67110	SNP	С		Т		сстВ синоним.
69004	SNP	С		Т	Т	MГP rpl10-nad1
70130	SNP	А		C	С	MГP rpl10-nad1
71087	SNP	G		C		MГP rpl10-nad1
71460	SNP	G		C		MΓP rpl10-nad1
71498-99	INDEL	GT	GGGG CT	GGGG CT	GGGG CT	MГР rpl10-nad1
71529	SNP	Т		C		MΓP rpl10-nad1
72511	SNP	G		А		MГP rpl10-nad1
72939	SNP	G		A		MГP rpl10-nad1
73615	SNP	С		Т		MГP rpl10-nad1
77437	SNP	С		Т		MΓP rpl10-nad1
77796	SNP	С		G		MГP rpl10-nad1
77915	SNP	G		Т		MГP rpl10-nad1
81971-72	INDEL	GA		GACA		MΓP rpl10-nad1
83865	SNP	С		Т		MΓP rpl10-nad1
84472	SNP	А		G	G	MΓP rpl10-nad1
85178	SSR	T8		T9		MΓP rpl10-nad1
85594	SNP	С		Т		MΓP rpl10-nad1
86188	SSR	T7		T6	T6	MΓP rpl10-nad1
88615	SNP	G		С		MГP rpl10-nad1
88616	SNP	С		Т		MFP rpl10-nad1
89633	SNP	С		G		MFP rpl10-nad1
90169	SNP	А		C	C	MFP rpl10-nad1

90173	SNP	А		C		MFP rpl10-nad1
91106	SNP	G	Т	Т	Т	MГP rpl10-nad1
91107	SNP	А	С	C	С	MГP rpl10-nad1
96417	SNP	Т		С		MГР nad1-coxI
98340	SNP	Т		C		MГР nad1-coxI
99127	SNP	Т		С		MГР nad1-coxI
102190	SNP	G		C		MГР nad1-coxI
103204	SNP	G		С		MГР nad1-coxI
104337	SNP	Т		G		МГР nad1-coxI
105195	SNP	А		G		МГР nad1-coxI
107634	SNP	Т		G		<i>coxI</i> синоним.
109233	SNP	С		Т		MГP rps11-nad5
111296-97	INDEL	TG		TGG		MГP rps11-nad5
113470	SNP	А		G	G	MГP nad5-atp9
113934	SNP	С		A		MГP nad5-atp9
115237	SNP	G		A		МГР <i>atp9-rps4</i>
117811	SNP	А		G		МГР <i>atp9-rps4</i>
119108	SNP	С		A	А	МГР <i>atp9-rps4</i>
121109-10	INDEL	CC	СТТС	CTTC	CTTC	МГР <i>atp9-rps4</i>
121973	SNP	С		Т		МГР <i>atp9-rps4</i>
122615	SNP	А		G		rps4 Lys167Arg
123565	SNP	С		Т		MΓP rps4-rrn26
125075	SNP	С		Т		MГP rps4-rrn26
125854	SNP	А		G		MГP rps4-rrn26
127017	SNP	Т		C		MГP rps4-rrn26
128372	SNP	С		Т	Т	MΓP rps4-rrn26
130827	SNP	С		Т		rrn26
131787	SNP	G		C		rrn26
132832	SNP	Т		G		MΓP rrn26-rrn5
143537	SNP	G		Т		MΓP rrn18-rps13
145449	SNP	Т		C		MΓP rrn18-rps13

149518	SNP	Т			G		MГР rps13-nad6
149893	SSR	T10			Т9		MГP rps13-nad6
152989	SSR	T9			T10		MГP rps13-nad6
157009	SNP	Т			С		MГP rps13-nad6
160332	SNP	Т			G		MГP rps13-nad6
160333	SNP	Т			A		MΓP rps13-nad6
160344	SNP	Т			С		MГP rps13-nad6
160347-48	INDEL	TG			TAAG		MГP rps13-nad6
160349	SNP	Т			А		MГP rps13-nad6
160350	SNP	А			G		MГP rps13-nad6
160353	SNP	G			Т		MГP rps13-nad6
160366	SNP	С			А		MГP rps13-nad6
160372	SNP	G			Т		MГP rps13-nad6
161379	SNP	Т			G		MГP rps13-nad6
170187	SSR	T14	T12	T12	T8	T7	MΓP nad6-ymf16
170562	SNP	G			Т		MΓP nad6-ymf16
174932	SNP	С			Т	Т	MΓP nad6-ymf16
177554	SNP	G			Т	Т	MΓP nad6-ymf16
178408	SSR	Т9	T8		T8	T8	<i>утf16</i> интрон
178952	SNP	А			С		<i>ymf16</i> Met161Leu
179735	SSR	A10			A9	A9	MГР ymf16-cob
181673	SNP	Т			G		MГР ymf16-cob
188296	SNP	G			Т	Т	сов синоним.
188443	SNP	Т			G		<i>соb</i> синоним.
188452	SNP	G			А		сов синоним.
189084	SNP	А			G		сов синоним.
189619	SNP	G			А		cob Glu427Lys
195010	SNP	G		Т	Т	Т	MIP cob-ccmFc
195017	SNP	С		A	A		MIP cob-ccmFc
196318	SNP	G			Т	Т	MIP cob-ccmFc
197773	SNP	Т			C		MIP cob-ccmFc

198038-44	INDEL	CATTC TC			-		МГР cob-ccmFc
200176	SNP	G		А	A	А	<i>ccmfC</i> (интрон)
200517	SNP	G		А	А	А	<i>ccmfC</i> (интрон)
202282	SNP	G			С	С	orf873 Ala129Gly
202308	SNP	С			Т	Т	<i>orf</i> 873 синоним.
202311	SNP	Т			C	С	orf873 синоним.
202324	SNP	G			Т	Т	orf873 Ser115Glu
202325	SNP	А			С	С	orf873 Ser115Glu
202332	SNP	С			Т	Т	orf873 Glu112Gly
202333	SNP	Т			С	С	orf873 Glu112Gly
202350	SNP	Т			С	С	orf873 синоним.
202353	SNP	Т			С	С	orf873 синоним.
202380	SNP	С			G	G	orf873 Trp96Cys
202441	SNP	С			G	G	orf873 Cys76Ala
202442	SNP	А			С	С	orf873 Cys76Ala
202445	SNP	А			G	G	orf873 синоним.
202446	SNP	С			Т	Т	orf873 синоним.
202455	SNP	G			Т	Т	orf873 синоним.
202470-71	INDEL	GA			GAAG AAA		orf873 сдвиг рамки считывания
202520	SNP	Т			С	С	orf873 Ile50Val
202526	SNP	G			Т	Т	orf873 Leu48Ile
202538	SNP	Т			Α	А	orf873 Ile44Leu
202539	SNP	Т			С	С	orf873 Ile44Leu
202548	SNP	Т			G	G	orf873 Leu40Phe
202554	SNP	С			A	А	orf873 Leu38Phe
202583	SNP	Т			G	G	orf873 Thr29Pro
202605	SNP	С			A	А	orf873 Met21Ile
202616	SNP	Т			G	G	orf873 Ile18Leu
202620	SNP	С			Т	Т	orf873 синоним.
202628	SNP	Т			C	С	orf873 Trh14Ala
-		-	•	159	-		·

204848-49	INDEL	AA	ATA	ATA	ATA	МГР <i>atp1-ccmFn</i>
208112	SNP	Т		G		MГP atp1-ccmFn
208113	SNP	С		A		МГР atp1-ccmFn
212584	SNP	С		Т		МГР atp1-ccmFn
213951	SNP	С		Т		<i>сстFn</i> синоним.
214504	SNP	С		A		ccmFn Arg193Leu
214655	SNP	С		Т		ccmFn Ala143Thr
214817	SNP	Т		С		ccmFn Ile91Val
215173	SNP	Т		C		MГР ccmFn-rps3
216014	SNP	Т		C		MГР ccmFn-rps3
216356	SNP	G		A		MГР ccmFn-rps3
217162	SNP	G		A		MГР ccmFn-rps3
217235	SNP	G		С	С	MГР ccmFn-rps3
217356	SNP	G		C	С	MГР ccmFn-rps3
217931	SNP	С		А		MГР ccmFn-rps3
218706	SNP	G		A		MГР ccmFn-rps3
219383	SNP	G		C		MГР ccmFn-rps3
220996	SNP	С		Т		MГР ccmFn-rps3
221032	SNP	С		Т		MГР ccmFn-rps3
221286	SNP	А		Т		MГР ccmFn-rps3
221468	SNP	G		Т		MГР ccmFn-rps3
221998	SNP	С		G		MГР ccmFn-rps3
222555	SNP	С		Т		MГР ccmFn-rps3
223717	SNP	G		A	А	MГР ccmFn-rps3
223834	SNP	С		G		MГР ccmFn-rps3
223928-29	INDEL	AA		AATA		MГР ccmFn-rps3
223993	SNP	G		С	С	MГР ccmFn-rps3
226257-58	INDEL	CA		CAA	CAA	MГР ccmFn-rps3
226661	SNP	G		Т		MГР ccmFn-rps3
226663	SNP	G		C		MГР ccmFn-rps3
226665	SNP	А		C		MГР ccmFn-rps3

227086	SNP	А			G	G	MГР ccmFn-rps3
227123	SNP	Т			G		MГР ccmFn-rps3
227124	SNP	С			A		MГР ccmFn-rps3
228443	SNP	С			Т		<i>rps3</i> Ala3Val
229032	SNP	G			A		<i>rps3</i> синоним.
233878-79	INDEL	AA			ATA		МГР rpl16-matR
235275	SNP	С			A		МГР <i>rpl16-matR</i>
239196	SNP	G			A		МГР <i>rpl16-matR</i>
239403	SNP	G			C		МГР rpl16-matR
239446	SNP	А			C		МГР <i>rpl16-matR</i>
239882	SNP	G		А	A	А	МГР <i>rpl16-matR</i>
241037	SNP	G		А	A	А	МГР <i>rpl16-matR</i>
241477	SNP	А		C	C	С	МГР rpl16-matR
246055	SNP	С		Т	Т	Т	МГР rpl16-matR
246869	SNP	А			C	С	МГР rpl16-matR
247578	SNP	А			G		МГР rpl16-matR
248268	SSR	A14	A10	A9	A10	A10	МГР rpl16-matR
249363	SNP	С		A	A	А	МГР rpl16-matR
250521	SNP	С			Т		<i>matR</i> синоним.
251046	SNP	G			С		matR синоним.
251052	SNP	С			Т		matR синоним.
251215	SNP	G			С		matR Ala227Gly
256986	SNP	G			С		MГP rps12-nad9
259018	SNP	С			A		MГP rps12-nad9
259715	SNP	G			Т		MГP rps12-nad9
260997	SSR	T7			T8		МГР nad9-atp6
261328	SNP	С			G		MГP nad9-atp6
261909	SSR	A8			A7		МГР nad9-atp6
262082	SNP	G		А	A	А	MГP nad9-atp6
263441	SNP	А			C		МГР nad9-atp6
266518	SNP	Т			C		MГP nad9-atp6

266956	SNP	G		С		MГP nad9-atp6
268498	SNP	G		С		МГР nad9-atp6
270678	SNP	G	Т	Т	Т	МГР atp6-coxII
271164	SNP	G		А		МГР atp6-coxII
273346	SNP	С	А	А		МГР atp6-coxII
275541	SNP	А		Т		МГР atp6-coxII
277624-33	INDEL	ATACT CACGA		-		МГР atp6-coxII
277852	SNP	G		А		МГР atp6-coxII
281255	SNP	С		G		МГР atp6-coxII
282154	SNP	С		Т		<i>coxII</i> (интрон)
282185	SNP	G		А		<i>coxII</i> (интрон)
282429	INDEL	А		-		<i>coxII</i> (интрон)
282542	SNP	Т		С		<i>coxII</i> (интрон)
283593	SNP	G		А		<i>coxII</i> (интрон)
284113	SNP	С		G		<i>coxII</i> (интрон)
285912	SNP	G		А		MГР coxII-nad2
286666	SNP	Т		G		MГР coxII-nad2
287286-89	INDEL	AGGC		-		МГР <i>coxII-nad2</i>

Приложение 3.

Открытые рамки считывания, локализованные у стерильных аналогов линии HA89 подсолнечника с различными типами ЦМС.

	Кол-во ТМД*	
ОРС, линии	в кодируемом	Аминокислотная последовательность, кодируемая ОРС
,	белке	
orf728		MAATIASAGAAIGIGNVI SSSIHSVADNDSI AKOSEGYAII GE
01j220 UA80(DET2)	1	VIAATIASAGAAIOION VLSSSIIIS VARINFSLARQSFGTAILOF ATTEATASEADMMAETISSVEDSVNODVVVEVS
11A09(FE12)		
orf285	1	MKKKKREENDQLEMLEGALITLIDNIFVKFLLCLLLILVSFLI
HA89(PET2)	1	YTYDRSFRVHQQTLLWAHQHNVTPGVSFLYKIRVGHDGTT
, ,		LDPIPLPVKEHC
orf306	0	MTRKDRSAFLSFHQERHLWTSASTSSPSRVGIGTMDQDFWF
HA89(PET1)	0	PFDFQLRSLLLLEGYGFLSPGYRFIGSATLSIKAITPLIHTHSA
HA89(MAX1)		PLTPERKLAHLSDWIRS
orf324		MKDQLIEGKSESIKMQLYEHRLENLPREKARKRPNRHTNSL
$H\Delta 89(\Delta NN2)$	0	SRLPNRLAKGGSSYLYESRTRFAAEWNEIHVLGGTSIPWHV
11/10/(/11/12)		GVRKHSHFIDSLSPFLIGLGQSFFSP
orf327		MKSYGHIFILRAIELSLASIKPSNYRLYNKLLRAIFSSPNTFNY
HA80(ANN2)	0	LTQCRRLVLIPFGNSAGGKGLSVSSKFIRPLRMVTGQDWDS
$\Pi A 09(A \Pi \Pi 2)$		QQLSFFSSNPYPPQGVPGGLSTSI
orf315		MCLRPLFLVYDYPCSSSDVDIFTWLKVEMCDWLRPGNSFPS
$\frac{01343}{11490(4 \text{ NIN2})}$	0	RNSSRGVKSGGRSGCRGHSISGKEDGLDSLSFMAWAKAAL
HA89(ANN2)		MTFSEDMLIRRSQSQSLCSYAFTLSRPSKKDVHN
(400		MLFRLTARSLFLSFSFFMLVGRSVFMEQITPYKKGRSVSGPS
orf480 HA89(MAX1)	0	SQKNLPLPGGSGDDPDKRKKVPVSKDTANAAVSLLRQVILE
		ILARARDPSLREGLHNPTT
(11500		MPQLDKFTYFTQFFWSCLFDLRRTLFFCLFIFLILVARSVFM
orfH322	1	EQITPYKGRSISGPNAQSILPLPGGSGDDPNRKKVPVSKDTA
HA89(PEII)		TAAVSLLRQLVLEILARA
		MIVLEWLFLTIAPCDAAEPRQLGSQDAATPMMQGIIDFLHPP
(550		LLIIILVFVSGVLLLMERRGPHRIASSSSLSVFAGGAGEDPNR
orf558	1	GRRRTPVTRETITTGISLLRQLILEILVDTPDQALREGLNNPST
HA89(ANN2)		QAWNRALESALTERFGHSRYTWGHLWNIVNMVLELSEQGE
		RSPFFLRVIALVRARGT
		MARKGNPISVRLDLNRSSDSSRFVESTIHASIFFILLSLTFQNQ
orf645		LKKGGISLPVVKHGLLLIFILLLSIFLMNELYNAVVPFLAKSG
HA89(PET2)	0	DSGINPLPGPSDQNSIFPLIEEGEVPSES R/Q PKINRDPEFCISF
HA89(MAX1)		QNACDLESEISEIMETLLHEKGVVDLSQREIKREVEGFLSNV
· · · ·		WDMEPIPRNRRLTAILKSLRSRGVNSRNFKDFEKHIKNIPVL
		MILSVLSSLALVSGLMVVRAKNPVHSVLFPIPVFRNTSGLLL
		LLGLDFFAMIFPVVHIGAIAVSFLFVVMMFHIOIAEIHFEVIR
		YLPVSGIIGLIFWWEMFFILDNESIPLLPTORNTTSLRYMVYA
orf891		GKVRSWTNLETLGNLLYTYYSVWFLVPSLILLVAMIGAIVL
HA89(ANN2)	3	TMHRTTKVKRODVFRRNAIDSRRTIMRGMTDLLKESSLILV
		RIOFVRWPSWSYRCLDTLLFFSHFRMTVPFHFWYNFKPGPA
		IRCISRTPGIRRLLLEYHGIEYKDFKESLSYNLNLESFLLHGN
		SPN

		MRFLFSFLPERFRVLLNAIHNOGSSINDRPPGSVPSSSSVRIPL
		NTSVIVPPTRVGPSGVPLTNEDLPLLSELRRRLQLDVPLSNES
orf933	2	LRNAQSALTIADSVPENQENVMGIRYRHDPGRTSFLNFEFE
		MTNELIRKLTNICNSIGIKSSSVPYYIPDLFVYSRFGDGLRSL
HA89(ANN2)	_	VHETYDKVLVEILSFYKGRFGRFIILVSLGVSCTVWYTFVPG
		NPDIALI SDL FPRFETYOSFL NPDTYNK FFHKIC YIERS YITGE
		VI KTIENEEPESEI NIPEESGGTRVAVGI GI MIGVEI AMGIVP
		MINY VLQSMK V IASSSSSGISFPF VLEIV G IPLPGDSF INKL I
		AS I VSIPG YIVDPKIISSL I HFNKLL VDLK Y DFLEGKMYPK YI
		FSLQQQLDN IPIESLGKKLDSMRQDEL IGLSDYLQSLGYSD
		QAYLEYLKICDERYRDMVVPSPLEQFSILPLIPMKIENLYFSF
orf1197	7	TNSSLFMLLTLSLVLLLIHFVTKKGGGNLVPNAWQSLVELIY
HA89(ANN2)	/	DFVLNLVNEQIGGLSGNVKQKFFPCILVTFTFLLFCNLQGMI
		PYSFTVTSHFLITLGLSFSIFIGITIVGFQRNGLHFLSFLLPAGV
		PLPLAPFLVLLELISYCFRALSLGIRLFANMMAGHSLVKILSG
		FAWTMLCMNDLLYFIGDLGPLFIVLALTGLELGVAILQAYV
		FTILICIYLNDAINLH
		MPNNSHAFLGRTKPTISDKSFLIFRARSGTTRKKIFTMTMKD
		FIOREK RTVSPVI NESEEVPIOEGI SMDEIVEANI EKETI YI E
		GDSVTPASIFALTKI NYLYVFMRHDI FGTVKPAAIRSLOKF
		I NKTPPESVVPKI ESIYONEI KSI DNEI EPEEVNI SSKDEI N
	7	VCDEEVPSSSPI EOEDII PI IPMNIGNI VESETNSSI EMI I TI S
orf1287		I VI I I IHEVTK K CCCNI VDN AWOSI VEI IVDEVI NI VNEOI
HA89(MAX1)	/	COLSONWOVEEDOILVEINAWQSEVELLIDIVENEQI
		GOLSON VKQKFFPCILVIFIFLLFCNLQGIVIIPISFIVISHFLI
		ILULSFSIFIGITIVGFQKNGLHFLSFLLPAGVPLPLAPFLVLL
		ELISYCFKALSLGIRLFANMIMAGHSLVKILSGFAWIMILCMIN
		DLLYFIGDLGPLFIVLALIGLELGVAILQAYVFIILICIYLNDA
		INLH
		MNQSFGEEITYTLGSAIPLTSNDGALLPKNEIYARVKEAFLK
		NAELYNGSCLVQVIIRAYMDQVEKQDRPELKVSDRYQELLS
		IYQTELGELEAITARKIQHSKGKYKDYITALKKASGGRRAF
		MVSDLETILIDNKHRPYAAGLMLVHPGKDVKESLIYTYFSE
		DYSRYIESFEERSKKVLFDLVNKIIALVKIDRNAKIVYFHNFS
		RFDGVLVLKHLVCHHDYKLKPLFRNNRLYELSVYSGRKLL
		FRLRDSLNLLPGTLNNLAKSLCPSLGSKGSLDYQDVRLDNL
		VSKKDELIEYMKQDILLLGGIMQKAQEIYFHLYQLDIVSKIT
		LSSLALSIYRLKY YDEENWPIYIPNMNQDNFIRK AY YGGHT
		DTYKPYGEDLYYYDVNSLYPFVMKNYOMPGGKPVWHGN
orf2565	0	LDEKDLDSLYGFIEAYVVCPKTIKKPFLPYRNKNNTLTFPTG
HA89(PE12)	-	EFVGVYYSEELKFARDLGYTVLPLSGYLYERMDSPFIEFVN
		TOSEKRIEAKKAGNEALSEVYKILMNSLYGREGINPNSTTSEL
		CDHDRYRTI FKKDSFIYGSI I FKNKYIVSYHVNTGNTPFTW
		NPPKNGAVOLAAAITACARIYMYPYISRFFCYYTDTDSVVI
		GOPL PDFLISSSVI GMI KI FARIVKGYFLAPKSYGFIFK DAD
		GKIVI KHKGAAKSI VTI EWEOSOVDDPSPKEOVSVTSNEKI
		DWKDI FIOKOFSI VKI GI SMDCKDI DVVNCENTWIDTEDILI
		NULSIN VOLLUUNILE I LKINEIVIINKLŲ I KOEILOEKLOŲKUKE MICHSEK DDEISEMIKSKUDI II ODEMIKKETKETTKAATKUKA
		WIGHSENDKEISEWIKSKIDHLQDEWIKKFIKEIIKVVIKIKV
		VKSDNKIKKIKVVKKTERKNQTDKGKPP

* ТМД – трансмембранный домен