МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ «ФЕДЕРАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЦЕНТР ВСЕРОССИЙСКИЙ ИНСТИТУТ ГЕНЕТИЧЕСКИХ РЕСУРСОВ РАСТЕНИЙ имени Н.И. ВАВИЛОВА» (ВИР)

УТВЕРЖДЕНО Решением Ученого совета ВИР Протокол № <u>/ &</u> от 30,09 <u>LOLO</u>2.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ЧАСТНАЯ И ПРИКЛАДНАЯ ГЕНЕТИКА

Направление подготовки 06.06.01 «БИОЛОГИЧЕСКИЕ НАУКИ»

Профиль направления подготовки 03.02.07 ГЕНЕТИКА

Квалификация выпускника: «Исследователь. Преподаватель-исследователь» Форма обучения Очная

1.Цели и задачи дисциплины

1.1. Цели и задачи дисциплины

Цель изучения дисциплины — формирование у аспирантов углубленных профессиональных теоретических знаний генетических основ наследственности и изменчивости и практических навыков в области генетики культурных растений для применения их в пребридинге и селекционном процессе.

Задачи изучения дисциплины.

- расширить знания о возможностях использования агробиоразнообразия и генетических ресурсах растений, возделываемых на территории РФ;
- углубить представления о наследственном потенциале генетически изученных культурных растений;
- освоить методы и подходы изучения скрытой генетической изменчивости сельскохозяйственных культур
- подготовить аспирантов к применению полученных знаний при изучении наследования и изменчивости хозяйственно-ценных признаков культурных растений и их родичей.

1.2. Место дисциплины в структуре образовательной программы

«Частная и прикладная генетика» является дисциплиной, направленной на подготовку к сдаче кандидатского экзамена и входит в вариативную часть Блока 1 ФГОС высшего образования по направлению подготовки 06.06.01 Биологические науки.

«Частная и прикладная генетика» Дисциплина направлена получение знаний в области генетики основных сельскохозяйственных культур, возделываемых в агропромышленном комплексе РФ, а также применения этих знаний в селекционной работе. Дисциплина включает в себя: углубленные теоретические знания геномному ПО гибридологическому анализу, межвидовой гибридизации, генетические основы агробиоразнообразия и его использования в научных исследованиях и практической селекции.

2. Результаты освоения дисциплины

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО:

В результате изучения дисциплины формируются и углубляются универсальные компетенции:

- способность к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК -1);
- готовность участвовать в работе российских и международных исследовательских коллективов по решению научных и научно-образовательных задач (YK 3);
- готовность использовать современные методы и технологии научной коммуникации на государственном и иностранном языках (YK 4);
- способность планировать и решать задачи собственного профессионального и личностного развития (УК -5);

общепрофессиональные компетенции:

- способность самостоятельно осуществлять научно-исследовательскую деятельность в области генетики с использованием современных методов исследования и информационно-коммуникационных технологий (ОПК -1);

профессиональные компетенции

- способностью планировать эксперименты и анализировать результаты научно- исследовательской деятельности в области общей и частной генетики культурных растений и их родичей (ПК-1)
- владением методами изучения генетического контроля качественных и количественных признаков растений (ПК-2)
- способностью применять теоретические и экспериментальные знания по генетическому контролю признаков растений в научных исследованиях, предбридинге и селекции основных сельскохозяйственных растений (ПК-3)

В результате освоения дисциплины аспирант должен:

знать:

- основные закономерности наследования количественных и качественных признаков
- основные принципы цитоплазматического наследования
- основные принципы маркирования и картирования генов Уметь:
- определять систему размножения и тип опыления культуры;
- подбирать и создавать материал для проведения генетического анализа;
- разрабатывать схемы скрещиваний для решения поставленной задачи;
- изучать генетическое разнообразие культурных растений по конкретным селекционно-ценным признакам и биологически информативным маркерам;
- использовать в практической работе знания по частной генетике растений....
- изучать разнообразие культуры и выявлять скрытый потенциал культуры... Владеть:
 - методами генетического анализа;
 - методами геномного анализа;
 - методами проведения скрещиваний;

- методами внутривидовых скрещиваний у конкретной изучаемой культуры с.-х. растений;
- методами оценки фенотипического разнообразия по конкретным изучаемым признакам растений;

3. Структура и содержание дисциплины.

Общая трудоемкость дисциплины составляет $\underline{2}$ зачетные единицы, $\underline{72}$ часа.

3.1 Структура дисциплины

Риши робот	Часов в 3	Часов в 4	Всего,
Виды работ	семестре	семестре	час
Общая трудоемкость	36	36	72
Аудиторная работа:	18	18	36
Лекции (Лек)	6	8	14
Практические занятия (Пр)	12	8	20
Консультации		2	2
Самостоятельная работа:	18	9	27
Самостоятельное изучение	18	9	27
разделов			
Контроль		9	9
Вид итогового контроля		Экзамен	Экзамен

3.2. Распределение часов по темам и видам занятий.

Наименования разделов (тем) дисциплины	Лекционные занятия, часов	Практические занятия, часов	Самостоятельная работа, часов
Предмет и методология селекции. Генетика	1	-	-
как теоретическая основа селекции.			
Значение наследственной изменчивости	1	2	2
организмов для селекционного процесса и			
эволюции.			
Роль частной генетики в селекции.	1	2	2
Системы скрещиваний в селекции растений.	1	2	4
Отдаленная гибридизация. Особенности	1	2	4
межвидовой и межродовой гибридизации			

Явление гетерозиса и его генетические механизмы. Производство гибридных семян на основе цитоплазматической мужской стерильности.	1	2	4
Проблемы глобального земледелия, генетическая эрозия культурных растений и современные задачи селекции.	1	2	4
Геномы культурных растений. Особенности генетического анализа	1	4	4
Модельные виды культурных растений в молекулярной генетике. Сравнительная генетика и геномика.	2	2	4
Гены устойчивости. Генетические основы гибридной селекции	2	2	4
Селекционно-генетические методы улучшения сельскохозяйственных культур	2	2	4
Итого	14	22	36

3.3. Содержание разделов (тем) дисциплины.

Наименования	
разделов (тем)	Содержание разделов (тем) дисциплины
дисциплины	
Предмет и	Учение об исходном материале. Центры
методология	происхождения культурных растений по Н.И.
селекции. Генетика	Вавилову. Понятие о селекционном достижении.
как теоретическая	Сохранение генофонда ценных культурных и диких
основа селекции.	форм растений. История происхождения и
	распространения культурных растений и их
	интродукция в Европу. Центры происхождения.
	Коллекции культурных растений и их диких
	родичей. Коллекция ВИР и ее использование в
	улучшении культурных растений. Значение
	селекционных достижений в улучшении культурных
	растений и расширении ее генетического
	разнообразия.
Значение	Закон гомологических рядов в наследственной
наследственной	изменчивости Н.И. Вавилова. Массовый отбор,
изменчивости	индивидуальный отбор, комбинационная селекция.
организмов для	Значение и роль эволюции культурных растений в
селекционного	процессе селекционного отбора от диких родичей
процесса и эволюции.	культурных растений к современным гибридам. Роль
	генетического полиморфизма исходного материала
	для улучшения культурных растений.

Роль частной генетики	Использование новейших достижений прикладной
в селекции.	генетики в гибридной селекции. Индуцированный
в селекции.	мутагенез и его виды. Основные мутации кукурузы
	имеющие хозяйственную ценность и методы их
	получения. Полиплоидные и анеуплоидные ряды,
	_ ·
	использование полиплоидии в селекции. Значение
C	гаплоидии в дигаплоидной селекции.
Системы	Аутбридинг. Инбридинг. Коэффициент инбридинга -
скрещиваний в	показатель степени гомозиготности организмов.
селекции растений.	Линейная селекция. Получение инбредных линий и
	ЦМС аналогов. Создание стерильных тестеров и
	признаковой коллекции доноров и источников
	хозяйственно ценных признаков
Отдаленная	Методы отдаленной гибридизации. Способы
гибридизация.	преодоления стерильности гибридного потомства и
Особенности	ускоренного получения репродукции семян. Методы
межвидовой и	выделения хозяйственно ценных генотипов и их
межродовой	дальнейшее селекционное улучшение.
гибридизации	
Явление гетерозиса и	Разбор схем определения комбинационной
его генетические	способности. Сравнительный анализ результатов
механизмы.	испытания гибридов. Методика выявления
Производство	селекционно ценных генотипов родительских линий.
гибридных семян на	Разбор схемы первичного семеноводства
основе	родительских форм.
цитоплазматической	Практические занятия: Разбор селекционных схем
мужской	простых и сложных гибридов. Схемы селекции
стерильности.	первичного семенного материала родительских форм
	и их испытания. Контроль качества семенной
	продукции гибридов и родительских форм.
Проблемы	Проблемы селекции и возделывания культурных
глобального	растений в связи с глобальными изменениями
земледелия,	климата и роста населения в мире. Риски
генетическая эрозия	генетической эрозии в связи с сужением
культурных растений	генетического разнообразия. Значение
и современные задачи	нутрициологических исследований в гибридной
селекции.	селекции. Риски катаклизмов и проекты по
	сохранению генетического разнообразия растений.
	Практическое занятие:
	Дискуссия о возможных глобальных катаклизмах на
	Земле в связи с глобальными изменениями климата и
	пути сохранения биологического разнообразия
	культурных растений в этих условиях. Возможности
	и перспективы освоения околоземного пространства

	и развития космического растениеводства.
Геномы культурных	В ходе генетического исследования происходит
растений.	выявление структуры и биологической функции
Особенности	генома растения, а также его регулирующих
генетического	участков. Функция отдельных генов или участков
анализа.	ДНК может быть определена путем установления
	связей между внешними отличиями ряда растений и
	их генетическими различиями. Генетические
	исследования также способствуют анализу тех
	характеристик растений, проявление которых
	обусловлено не отдельными генами, а генной сетью.
Модельные виды	Молекулярная генетика и модельные виды
культурных растений	сельскохозяйственных культур. Изучение полного
в молекулярной	генома организма при помощи определения
генетике.	последовательности, сборки и анализа функций и
Сравнительная	структуры его ДНК
генетика и геномика.	
Гены устойчивости.	молекулярно-генетические механизмы
Генетические основы	формирования хозяйственно ценных признаков,
гибридной селекции	методы управления этими механизмами и их
	применении в селекции следующего поколения
Селекционно-	Генетико-биотехнологические методы в селекции.
генетические методы	
улучшения	
сельскохозяйственных	
культур.	

3.4. Наименование тем для самостоятельной работы.

- 1. Агробиоразнообразие, методы и необходимость его сохранения и изучения
- 2. Линеевский вид как система, закон гомологических рядовнаследственной изменчивости.
- 3. Потенциал наследственной изменчивости.
- 4. Качественные и количественные признаки.
- 5. Хозяйственно ценные признаки.
- 6. Параметры, определяющие устойчивость растений к патогенам.
- 7. Эффект гетерозиса, возможности его использования.
- 8. Сорт, линия, образец коллекции.
- 9. Математические методы оценки фено- и генотипической изменчивости.

4. Оценочные средства для текущего контроля успеваемости и промежуточной аттестации.

Контроль успеваемости осуществляется на основании контрольных опросов по результатам самостоятельного изучения тем, написания реферата.

Итоговая успеваемость студентов определяется в процессе сдачи итогового (дифф.) зачета.

Примерные темы для рефератов:

- 1. Методы создания и пути использования признаковой коллекции
- 2. Методы создания и практическое применение генетической коллекции
- 3. Выявление скрытого потенциала наследственного разнообразия культуры
- 4. Принципы генетического анализа
- 5. Применение молекулярно-генетического анализа для исследований по частной генетике
- 6. Использование молекулярных маркеров в селекции
- 7. Гетерозисный эффект и его использование в селекции
- 8. Значение межвидовой гибридизации для генетики и селекции культуры
- 9. Генетический анализ признака устойчивость к болезням.
- 10. Характер наследования масличности и качественного состава масла
- 11. Необходимость и пути сохранения биологического разнообразия

Примерные контрольные вопросы для итогового зачета:

- 1. Генетические ресурсы культурных растений
- 2. Коллекции культурных растений
- 3. Генные банки
- 4. Генетические коллекции
- 5. Признаковые коллекции
- 6. Генетический контроль хозяйственно ценных признаков
- 7. Биохимические признаки
- 8. Геномный анализ
- 9. Полиплоидные ряды и их использование
- 10. Типы размножения, методы их выявления
- 11. Наследование несовместимости
- 12. Гетеростилия
- 13. Генетические карты
- 14. Межвидовая гибридизация
- 15. Цитоплазматическая мужская стерильность
- 16.Системы UMC-Rf
- 17. Генетика пола
- 18. Гены устойчивости к болезням
- 19. Применение генетических знаний в практической селекции
- 20.Использование методов молекулярного анализа для картирования генов
- 21.Использование методов молекуляро-генетического анализа для изучения механизмов работы гена

5. Образовательные технологии

В процессе изучения дисциплины используются как традиционные образовательные технологии: информационная лекция и практические занятия, так и информационно–коммуникационные образовательные технологии: лекция-визуализация.

6. Учебно-методическое и информационное обеспечение дисциплины

6.1. Основная литература, необходимая для освоения дисциплины

- 1. Генетика культурных растений: кукуруза, рис, просо, овес./ Под. Ред. В.Ф. Дорофеева, Т.С. Фадеевой, Г.Е. Шмараева. Л. Агропромиздат. Ленинград. Отд-ние, 1988.272 с.
- 2. Вавилов Н.И. Теоретические основы селекции. М.-Л., 1935.т. 2
- 3. Гаврилова В.А., Анисимова И.Н. Генетика культурных растений. Подсолнечник..СПб.: ВИР, 2003.209с.
- 4. Генетика картофеля./Под. Ред. В.В. Хвостовой, И.М. Яшиной. Изд-во Наука, М.:1973. 272с.
- 5. Генетика культурных растений: Зерновые./ Под. Ред. Т.С. Фадеевой, В.Д. Кобылянского. Л. Агропромиздат. Ленинград. Отд-ние, 1986.286 с.
- 6. Генетика культурных растений: кукуруза, рис, просо, овес./ Под. Ред. В.Ф. Дорофеева, Т.С. Фадеевой, Г.Е. Шмараева. Л. Агропромиздат. Ленинград. Отд-ние, 1988.272 с.
- 7. Генетика культурных растений: Зернобобовые, овощные, бахчевые./ Под. Ред.Т.С. Фадеевой, В.И. Буренина. Л. Агропромиздат. Ленинград. Отд-ние, 1990. 287 с.
- 8. Генетика культурных растений (лен, картофель, морковь, зеленые културы, гладиолус, яблоня, люцерна)/ Под. Ред. В.А. Драгавцева, Т.С. Фадеевой; сост. В.И. Буренин. СПб: ВИР, 1998. 193с.
- 9. Жимулёв И.Ф. Общая и молекулярная генетика: Учеб.пособие 3-е издание. Новосибирск: Сиб. унив. изд-во. 2006. 478 с. 1.
- 10. Жученко А.А. Генетика томатов/ Изд-во «Штиинца». Кишинев, 1973.663с.
- 11. Жученко Генетика томатов. М.: Колос, 2003.
- 12. Клещевина/Под ред. Мошкина В.А.: М.:колос, 1980.352с.
- 13.Инге-Вечтомов С.Г. Генетика с основами селекции. М.: Высш. шк., 2010.-740c.
- 14.Инге-Вечтомов С.Г. Генетика с основами селекции: Учебн. для студ.биол. спец. ун-ов / С.В. Инге-Вечтомов. М.: 2010.— 591 с.
- 15. Литун П.П., Проскурин В.В. Генетика количественных признаков. Киев.: УМК ВО, 1992.

- 16. Лобашев М.Е. Генетика: Учебник 2-е изд. Л.: ЛГУ, 1967. 752 с.
- 17. Лутова Л.А., Ежова Т.А., Додуева И.Е., Осипова М.А. Генетика развития растений: для биологических специальностей университетов. 2-е изд. перераб. и доп.СПб.: «Изд-во Н-Л», 2010. 432 с.
- 18. Льюин Б. Гены. М.: БИНОМ, 2011.
- 19. Смирнов В.Г., Соснихина С.П. Генетика ржи. Л. Изд.-во Ленинград. Унта, 1984. 264с.
- 20. Щелкунов С.Н. Генетическая инженерия. Новосибирск: Сиб. унив. издво, 2008.

6.2. Дополнительная литература, необходимая для освоения дисциплины

- 1. Вавилов Н.И. Иммунитет растений к инфекционным заболеваниям. М, 1919.
- 2. Лутова Л.А., Н.А. Проворов , А. Н. Тиходеев , И. А. Тихонович , О. Т. Ходжайова ., С. О. Шишкова Генетика развития растений. СПб. : Наука, 2000.
- 3. Медведев С.С. Физиология растений.: учебник. СПб.: БХВ-Петербург, 2013. 512с.
- 4. Сингер, М.П. Берг Гены и геномы М.: Мир, 1998.
- 5. Стент Г. Молекулярная генетика. М.: Мир, 1974.
- 6. Смирнов В.Г. Цитогенетика. Учеб. Для вузов по спец. «Генетика». М.: Высшая школа.,1991. 274с.
- 7. Ридли Мэтт. Геном: автобиография вида в 23 главах / М. Ридли (пер. с английского) М., 2008-432 с
- 8. Генная инженерия растений. Под.ред. Дж. Дрейпера, Р. Скотта, Ф.Армитиджа, Р. Уолдена. М.: Мир, 1991.
- 9. В. Н. Рыбчин Основы генетической инженерии. СПб. : СПбГТУ, 2002.
- 10. Тихомирова М.М.Генетический анализ. Л.: ЛГУ, 1990.

7. Материально-техническое обеспечение дисциплины

Вид аудитории		Технические средства и оборудование
Аудитория	(лабораторный	Весы ВК-1500 Масса-К (НПВ 1500г. дискретность
комплекс)	для проведения	0,02 внешняя калибровка 2 класс, платформа 136*162
практических	(лабораторных)	мм) - 1 шт.
занятий		Весы СЕ224-С (220г/0,01г, 0,1мг/1мг, класс точности
		1, встроенная калибровка) – 1 шт.;
		Система водоочистительная лабораторная Synergy,
		Millipore Франция – 1 шт.;
		Анализатор генетический Applied Biosystems 3500,
		вариант: исполнения: Applied Biosystems 3500, Thermo
		Fisher Scientific (Applied Biosystems) – 1 шт.;
		Камера для горизонтального электрофореза (150*150
		мм), в комплекте – 3 шт.;
		Источник питания для лабораторий PowerPac Basic
		Power Supply 041BR303953 – 3 шт.; Гребенки для

Система гель-документирования Gel Doc XR+ - 1 шт.; Трансиллюминатор ECX – F20.L– 1 шт.; Bopтекс Multi Vortex V-32 – 2 шт.; Аквадистиллятор ДЭ-4М – 1 шт.; Спектрофотометр NanoDrop OneC – 1 шт.; Генетический анализатор (Амплификатор T-100 BioRad - 3 шт.; Термоциклер CFX96, Bio-Rad (амплификатор детекцией в режиме реального времени) – 1 шт.; Π ЦР-бокс – 1 шт.; Центрифуга Multi-spin FV-2400 − 2 шт.: Высокоскоростная мини-центрифуга Microspin 12 – 1 Центрифуга 5424R ДЛЯ микропробирок, охлаждением, 15000 об/мин, 21130 g, Eppendof, - 1 Центрифуга-вортекс для ПЦР планшетов CVP-2 – 1 Диспергатор универсальный IKA Ultra Turrax Tube Drive с комплектом бус (стеклянные, металлические) – Микроволновая печь DEXP B25BSDWG - 1 шт.; Термостат твердотельный типа "Драй-блок" –2 шт.; Вертикальный низкотемпературный холодильник Innova-U101 − 1 IIIT.; Морозильник ATLANT M 7203-100 шт.: Холодильник ATLANT XM 4208-000-Генератор льда Hurakan HKN-GB20 – 1 шт.; Дезар-Кронт-802 настенный облучатель рециркулятор бактерицидный – 2 шт.; Бактерицидный облучатель Доктор Ультрафиолет 20 м ЕСО – 2 шт.; Дозаторы пипеточные, одноканальные 1-10 мкл, "Блэк"- 4 шт.: Дозаторы пипеточные, одноканальные 2-20 мкл, "Блэк" – 4 шт.: Дозаторы пипеточные, одноканальные 10-100 мкл, "Блэк" – 2 шт.; Дозаторы пипеточные, одноканальные 20-200 мкл, "Блэк" – 4 шт.; Дозаторы пипеточные, одноканальные 100-1000 мкл, "Блэк" – 4 шт.; Дозаторы пипеточные, восьмиканальные 5-50 мкл, "Блэк" – 1 шт.; Подставка для пипеток на 5 мест. – 4 шт.: Штатив для пробирок в ассортименте – 5 шт. Проектор, укомплектован специализированной Учебная аудитория для проведения занятий лекционного мебелью и техническими средствами обучения, для представления учебной информации большой типа, семинарского типа, текущего контроля успеваемости аудитории

электрофоретических камер – 8 шт. в ассортименте;

и промежуточной аттестации,	Ноутбук с доступом к информационно-
самостоятельной работы	телекоммуникационной сети Интернет - 15 шт.